Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA.
J Mol Biol. 2011 Feb 4;405(5):1295-310. doi: 10.1016/j.jmb.2010.11.025. Epub 2010 Dec 3.
Current homology modeling methods for predicting protein-protein interactions (PPIs) have difficulty in the "twilight zone" (<40%) of sequence identities. Threading methods extend coverage further into the twilight zone by aligning primary sequences for a pair of proteins to a best-fit template complex to predict an entire three-dimensional structure. We introduce a threading approach, iWRAP, which focuses only on the protein interface. Our approach combines a novel linear programming formulation for interface alignment with a boosting classifier for interaction prediction. We demonstrate its efficacy on SCOPPI, a classification of PPIs in the Protein Databank, and on the entire yeast genome. iWRAP provides significantly improved prediction of PPIs and their interfaces in stringent cross-validation on SCOPPI. Furthermore, by combining our predictions with a full-complex threader, we achieve a coverage of 13% for the yeast PPIs, which is close to a 50% increase over previous methods at a higher sensitivity. As an application, we effectively combine iWRAP with genomic data to identify novel cancer-related genes involved in chromatin remodeling, nucleosome organization, and ribonuclear complex assembly. iWRAP is available at http://iwrap.csail.mit.edu.
当前用于预测蛋白质-蛋白质相互作用(PPIs)的同源建模方法在序列同一性的“黄昏区”(<40%)存在困难。 串联方法通过将一对蛋白质的原始序列与最佳拟合模板复合物对齐,进一步扩展了覆盖范围,以预测整个三维结构。 我们引入了一种串联方法 iWRAP,它仅关注蛋白质界面。 我们的方法将一种新颖的线性规划接口对齐公式与用于交互预测的提升分类器相结合。 我们在 SCOPPI(蛋白质数据库中的 PPI 分类)和整个酵母基因组上证明了其功效。 iWRAP 在 SCOPPI 上进行严格的交叉验证时,可显著提高 PPIs 和其界面的预测效果。 此外,通过将我们的预测与完整复合物串联器相结合,我们实现了酵母 PPIs 的 13%的覆盖率,这比以前的方法在更高的灵敏度下提高了近 50%。 作为应用,我们有效地将 iWRAP 与基因组数据结合,以鉴定涉及染色质重塑、核小体组织和核糖核复合物组装的新型癌症相关基因。 iWRAP 可在 http://iwrap.csail.mit.edu 上获得。