Suppr超能文献

三种用于简单语言规则学习的理想观察者模型。

Three ideal observer models for rule learning in simple languages.

机构信息

Department of Psychology, Stanford University, Stanford, CA 94305, USA.

出版信息

Cognition. 2011 Sep;120(3):360-71. doi: 10.1016/j.cognition.2010.10.005. Epub 2010 Dec 4.

Abstract

Children learning the inflections of their native language show the ability to generalize beyond the perceptual particulars of the examples they are exposed to. The phenomenon of "rule learning"--quick learning of abstract regularities from exposure to a limited set of stimuli--has become an important model system for understanding generalization in infancy. Experiments with adults and children have revealed differences in performance across domains and types of rules. To understand the representational and inferential assumptions necessary to capture this broad set of results, we introduce three ideal observer models for rule learning. Each model builds on the next, allowing us to test the consequences of individual assumptions. Model 1 learns a single rule, Model 2 learns a single rule from noisy input, and Model 3 learns multiple rules from noisy input. These models capture a wide range of experimental results--including several that have been used to argue for domain-specificity or limits on the kinds of generalizations learners can make-suggesting that these ideal observers may be a useful baseline for future work on rule learning.

摘要

儿童在学习母语的曲折变化时,表现出能够将他们所接触到的例子的感知细节概括化的能力。“规则学习”现象——从有限的刺激中快速学习抽象的规则——已经成为理解婴儿期泛化的重要模型系统。对成人和儿童的实验揭示了在不同领域和类型的规则中表现出的差异。为了理解捕获这一系列广泛结果所需的表示和推理假设,我们引入了三个用于规则学习的理想观察者模型。每个模型都建立在之前的模型之上,允许我们测试单个假设的结果。模型 1 学习单个规则,模型 2 从噪声输入中学习单个规则,模型 3 从噪声输入中学习多个规则。这些模型捕获了广泛的实验结果——包括一些被用来论证特定领域或学习者可以进行的泛化类型的限制——这表明这些理想观察者可能是未来规则学习工作的有用基线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验