Suppr超能文献

贝叶斯学习与规则归纳心理学。

Bayesian learning and the psychology of rule induction.

机构信息

Universitat Pompeu Fabra, Center of Brain and Cognition, C. Roc Boronat, 138, Edifici Tanger, 55.106, 08018 Barcelona, Spain.

出版信息

Cognition. 2013 May;127(2):159-76. doi: 10.1016/j.cognition.2012.11.014. Epub 2013 Mar 1.

Abstract

In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to spell out the underlying assumptions, and to confront them with the empirical results Frank and Tenenbaum (2011) propose to simulate, as well as with novel experiments. While rule-learning is arguably well suited to rational Bayesian approaches, I show that their models are neither psychologically plausible nor ideal observer models. Further, I show that their central assumption is unfounded: humans do not always preferentially learn more specific rules, but, at least in some situations, those rules that happen to be more salient. Even when granting the unsupported assumptions, I show that all of the experiments modeled by Frank and Tenenbaum (2011) either contradict their models, or have a large number of more plausible interpretations. I provide an alternative account of the experimental data based on simple psychological mechanisms, and show that this account both describes the data better, and is easier to falsify. I conclude that, despite the recent surge in Bayesian models of cognitive phenomena, psychological phenomena are best understood by developing and testing psychological theories rather than models that can be fit to virtually any data.

摘要

近年来,贝叶斯学习模型已经被应用到越来越多的领域。虽然这些模型在理论上受到了批评,但它们的基本假设和预测很少被具体提出并通过实验进行检验。在这里,我以 Frank 和 Tenenbaum(2011)的规则学习贝叶斯模型为例,详细说明其基本假设,并将其与 Frank 和 Tenenbaum(2011)提出的模拟实验结果以及新的实验进行对比。虽然规则学习可以说是非常适合理性贝叶斯方法的,但我表明,他们的模型既不具有心理现实性,也不是理想观察者模型。此外,我还表明,他们的核心假设是没有根据的:人类并不总是优先学习更具体的规则,而是至少在某些情况下,会优先学习那些更突出的规则。即使承认这些未经证实的假设,我也表明 Frank 和 Tenenbaum(2011)所模拟的所有实验要么与他们的模型相矛盾,要么有大量更合理的解释。我基于简单的心理机制提供了对实验数据的替代解释,并表明这种解释不仅更好地描述了数据,而且更容易被证伪。我得出结论,尽管最近认知现象的贝叶斯模型激增,但通过开发和测试心理理论而不是可以拟合几乎任何数据的模型,才能更好地理解心理现象。

相似文献

1
Bayesian learning and the psychology of rule induction.贝叶斯学习与规则归纳心理学。
Cognition. 2013 May;127(2):159-76. doi: 10.1016/j.cognition.2012.11.014. Epub 2013 Mar 1.
8
Three ideal observer models for rule learning in simple languages.三种用于简单语言规则学习的理想观察者模型。
Cognition. 2011 Sep;120(3):360-71. doi: 10.1016/j.cognition.2010.10.005. Epub 2010 Dec 4.
10
Bayesian modeling of flexible cognitive control.灵活认知控制的贝叶斯建模
Neurosci Biobehav Rev. 2014 Oct;46 Pt 1:30-43. doi: 10.1016/j.neubiorev.2014.06.001. Epub 2014 Jun 11.

本文引用的文献

1
Non-bayesian inference: causal structure trumps correlation.非贝叶斯推理:因果结构胜过相关性。
Cogn Sci. 2012 Sep-Oct;36(7):1178-203. doi: 10.1111/j.1551-6709.2012.01262.x. Epub 2012 Jun 26.
2
Predicting pragmatic reasoning in language games.预测语言游戏中的语用推理。
Science. 2012 May 25;336(6084):998. doi: 10.1126/science.1218633.
5
Female extrapair mating behavior can evolve via indirect selection on males.雌性的配偶外交配行为可以通过对雄性的间接选择而进化。
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10608-13. doi: 10.1073/pnas.1103195108. Epub 2011 Jun 13.
6
A rational analysis of rule-based concept learning.基于规则的概念学习的理性分析。
Cogn Sci. 2008 Jan 2;32(1):108-54. doi: 10.1080/03640210701802071.
8
Learning a theory of causality.学习因果关系理论。
Psychol Rev. 2011 Jan;118(1):110-9. doi: 10.1037/a0021336.
9
The learnability of abstract syntactic principles.抽象句法原则的可学性。
Cognition. 2011 Mar;118(3):306-38. doi: 10.1016/j.cognition.2010.11.001. Epub 2010 Dec 24.
10
Three ideal observer models for rule learning in simple languages.三种用于简单语言规则学习的理想观察者模型。
Cognition. 2011 Sep;120(3):360-71. doi: 10.1016/j.cognition.2010.10.005. Epub 2010 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验