Suppr超能文献

摒弃贝叶斯法的最佳洗澡水:回应恩德雷斯(2013)。

Throwing out the Bayesian baby with the optimal bathwater: response to Endress (2013).

机构信息

Department of Psychology, Stanford University, USA.

出版信息

Cognition. 2013 Sep;128(3):417-23. doi: 10.1016/j.cognition.2013.04.010. Epub 2013 Jun 15.

Abstract

A recent probabilistic model unified findings on sequential generalization ("rule learning") via independently-motivated principles of generalization (Frank & Tenenbaum, 2011). Endress critiques this work, arguing that learners do not prefer more specific hypotheses (a central assumption of the model), that "common-sense psychology" provides an adequate explanation of rule learning, and that Bayesian models imply incorrect optimality claims but can be fit to any pattern of data. Endress's response raises useful points about the importance of mechanistic explanation, but the specific critiques of our work are not supported. More broadly, I argue that Endress undervalues the importance of formal models. Although probabilistic models must meet a high standard to be used as evidence for optimality claims, they nevertheless provide a powerful framework for describing cognition.

摘要

最近,一个概率模型通过独立的推广原则(概括性)统一了关于序列推广(“规则学习”)的发现(Frank & Tenenbaum,2011)。Endress 对这项工作提出了批评,认为学习者并不偏好更具体的假设(该模型的一个核心假设),“常识心理学”提供了对规则学习的充分解释,而且贝叶斯模型暗示了不正确的最优性主张,但可以拟合任何数据模式。Endress 的回应提出了关于机械解释重要性的有用观点,但对我们工作的具体批评并没有得到支持。更广泛地说,我认为 Endress 低估了形式模型的重要性。虽然概率模型必须达到很高的标准才能作为最优性主张的证据,但它们仍然为描述认知提供了一个强大的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验