School of Chemistry, University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester, M1 7DN, UK.
Curr Opin Chem Biol. 2011 Apr;15(2):234-40. doi: 10.1016/j.cbpa.2010.11.009. Epub 2010 Dec 3.
Ammonia lyases catalyse the reversible addition of ammonia to cinnamic acid (1: R=H) and p-hydroxycinnamic (1: R=OH) to generate L-phenylalanine (2: R=H) and L-tyrosine (2: R=OH) respectively (Figure 1a). Both phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) are widely distributed in plants, fungi and prokaryotes. Recently there has been interest in the use of these enzymes for the synthesis of a broader range of L-arylalanines. Aminomutases catalyse a related reaction, namely the interconversion of α-amino acids to β-amino acids (Figure 1b). In the case of L-phenylalanine, this reaction is catalysed by phenylalanine aminomutase (PAM) and proceeds stereospecifically via the intermediate cinnamic acid to generate β-Phe 3. Ammonia lyases and aminomutases are related in sequence and structure and share the same active site cofactor 4-methylideneimidazole-5-one (MIO). There is currently interest in the possibility of using these biocatalysts to prepare a wide range of enantiomerically pure l-configured α-amino and β-amino acids. Recent reviews have focused on the mechanism of these MIO containing enzymes. The aim of this review is to review recent progress in the application of ammonia lyase and aminomutase enzymes to prepare enantiomerically pure α-amino and β-amino acids.
氨裂解酶催化氨与肉桂酸(1:R=H)和对羟基肉桂酸(1:R=OH)的可逆加成,分别生成 L-苯丙氨酸(2:R=H)和 L-酪氨酸(2:R=OH)(图 1a)。苯丙氨酸氨裂解酶(PAL)和酪氨酸氨裂解酶(TAL)广泛存在于植物、真菌和原核生物中。最近,人们对利用这些酶合成更广泛的 L-芳基丙氨酸产生了兴趣。氨甲酰基转移酶催化相关反应,即α-氨基酸向β-氨基酸的转化(图 1b)。对于 L-苯丙氨酸,该反应由苯丙氨酸氨甲酰基转移酶(PAM)催化,通过中间体肉桂酸立体特异性地进行,生成β-Phe3。氨裂解酶和氨甲酰基转移酶在序列和结构上具有相关性,并且共享相同的活性位点辅因子 4-亚甲基咪唑-5-酮(MIO)。目前人们对利用这些生物催化剂制备广泛的对映体纯的 l-构型α-氨基酸和β-氨基酸的可能性感兴趣。最近的综述集中在这些含 MIO 的酶的机制上。本文的目的是综述氨裂解酶和氨甲酰基转移酶在制备对映体纯的α-氨基酸和β-氨基酸方面的最新进展。