Suppr超能文献

贝叶斯破坏性加权泊松治愈概率模型及其在皮肤黑色素瘤数据中的应用。

A Bayesian destructive weighted Poisson cure rate model and an application to a cutaneous melanoma data.

机构信息

Departamento de Estatística, Universidade Federal de São Carlos, São Carlos, SP, Brazil.

出版信息

Stat Methods Med Res. 2012 Dec;21(6):585-97. doi: 10.1177/0962280210391443. Epub 2010 Dec 5.

Abstract

In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis--latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de São Carlos, São Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de São Carlos, São Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.

摘要

在本文中,我们提出了一个新的贝叶斯灵活治愈率生存模型,该模型推广了 Klebanov 等人的随机模型[Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis--latent time distributions and their properties. Math Biosci 1993; 113: 51-75],并且与 Rodrigues 等人提出的破坏模型有很多共同之处[Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de São Carlos, São Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]。在我们的方法中,累积的病变或改变细胞数量遵循复合加权泊松分布。与促进时间治愈模型相比,该模型在分散性方面更加灵活。此外,它对感兴趣事件发生的生物学机制有一个有趣且现实的解释,因为它包括肿瘤细胞在初始治疗后或个体暴露于辐射后修复导致癌症诱导的改变细胞的破坏过程。换句话说,仅记录未被治疗消除或个体修复系统修复的原始改变细胞数量的受损部分。然后,使用马尔可夫链蒙特卡罗(MCMC)方法为所提出的模型开发贝叶斯推断。还对模型选择进行了一些讨论,并结合 Rodrigues 等人分析的皮肤黑色素瘤数据集进行了说明[Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de São Carlos, São Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验