Suppr超能文献

存在不规则地理单元时的克里金法和半变异函数反褶积

Kriging and Semivariogram Deconvolution in the Presence of Irregular Geographical Units.

作者信息

Goovaerts Pierre

机构信息

P. Goovaerts BioMedware, 516 North State Street, Ann Arbor, MI 48104, USA e-mail:

出版信息

Math Geol. 2008;40(1):101-128.

Abstract

This paper presents a methodology to conduct geostatistical variography and interpolation on areal data measured over geographical units (or blocks) with different sizes and shapes, while accounting for heterogeneous weight or kernel functions within those units. The deconvolution method is iterative and seeks the pointsupport model that minimizes the difference between the theoretically regularized semivariogram model and the model fitted to areal data. This model is then used in area-to-point (ATP) kriging to map the spatial distribution of the attribute of interest within each geographical unit. The coherence constraint ensures that the weighted average of kriged estimates equals the areal datum.This approach is illustrated using health data (cancer rates aggregated at the county level) and population density surface as a kernel function. Simulations are conducted over two regions with contrasting county geographies: the state of Indiana and four states in the Western United States. In both regions, the deconvolution approach yields a point support semivariogram model that is reasonably close to the semivariogram of simulated point values. The use of this model in ATP kriging yields a more accurate prediction than a naïve point kriging of areal data that simply collapses each county into its geographic centroid. ATP kriging reduces the smoothing effect and is robust with respect to small differences in the point support semivariogram model. Important features of the point-support semivariogram, such as the nugget effect, can never be fully validated from areal data. The user may want to narrow down the set of solutions based on his knowledge of the phenomenon (e.g., set the nugget effect to zero). The approach presented avoids the visual bias associated with the interpretation of choropleth maps and should facilitate the analysis of relationships between variables measured over different spatial supports.

摘要

本文提出了一种方法,用于对在具有不同大小和形状的地理单元(或街区)上测量的面状数据进行地质统计学变差函数分析和插值,同时考虑这些单元内的非均匀权重或核函数。反卷积方法是迭代的,旨在寻找点支撑模型,以最小化理论正则化半变异函数模型与拟合面状数据的模型之间的差异。然后将该模型用于面到点(ATP)克里金法,以绘制每个地理单元内感兴趣属性的空间分布。相干约束确保克里金估计值的加权平均值等于面状数据。使用健康数据(县级汇总的癌症发病率)和人口密度表面作为核函数来说明这种方法。在两个县地理特征形成对比的地区进行了模拟:印第安纳州和美国西部的四个州。在这两个地区,反卷积方法都产生了一个点支撑半变异函数模型,该模型与模拟点值的半变异函数相当接近。在ATP克里金法中使用该模型比简单地将每个县归结为其地理中心的面状数据的朴素点克里金法能产生更准确的预测。ATP克里金法减少了平滑效应,并且对于点支撑半变异函数模型中的小差异具有鲁棒性。点支撑半变异函数的重要特征,如块金效应,永远无法从面状数据中得到完全验证。用户可能希望根据其对该现象的了解来缩小解的范围(例如,将块金效应设为零)。所提出的方法避免了与等值线图解释相关的视觉偏差,并且应该有助于分析在不同空间支撑上测量的变量之间的关系。

相似文献

5
How does Poisson kriging compare to the popular BYM model for mapping disease risks?
Int J Health Geogr. 2008 Feb 4;7:6. doi: 10.1186/1476-072X-7-6.
7
Lessening the adverse effect of the semivariogram model selection on an interpolative survey using kriging technique.
Springerplus. 2016 Apr 29;5(1):549. doi: 10.1186/s40064-016-2142-4. eCollection 2016.
9
Application of a semivariogram based on a deep neural network to Ordinary Kriging interpolation of elevation data.
PLoS One. 2022 Apr 22;17(4):e0266942. doi: 10.1371/journal.pone.0266942. eCollection 2022.

引用本文的文献

4
Historical redlining and the epidemiology of present-day firearm violence in the United States: A multi-city analysis.
Prev Med. 2022 Dec;165(Pt A):107207. doi: 10.1016/j.ypmed.2022.107207. Epub 2022 Aug 24.
5
From Natural Resources Evaluation to Spatial Epidemiology: 25 Years in the Making.
Math Geosci. 2021 Feb;53(2):239-266. doi: 10.1007/s11004-020-09886-x. Epub 2020 Aug 28.
6
Population Grids for Analysing Long-Term Change in Ethnic Diversity and Segregation.
Spat Demogr. 2020;8(3):215-249. doi: 10.1007/s40980-020-00071-6. Epub 2020 Dec 21.
7
Spatial association between outdoor air pollution and lung cancer incidence in China.
BMC Public Health. 2019 Oct 26;19(1):1377. doi: 10.1186/s12889-019-7740-y.
8
Wild boar mapping using population-density statistics: From polygons to high resolution raster maps.
PLoS One. 2018 May 16;13(5):e0193295. doi: 10.1371/journal.pone.0193295. eCollection 2018.
9
Exploring spatial patterns of sudden cardiac arrests in the city of Toronto using Poisson kriging and Hot Spot analyses.
PLoS One. 2017 Jul 3;12(7):e0180721. doi: 10.1371/journal.pone.0180721. eCollection 2017.
10
Spatiotemporal exposure modeling of ambient erythemal ultraviolet radiation.
Environ Health. 2016 Nov 24;15(1):111. doi: 10.1186/s12940-016-0197-x.

本文引用的文献

5
Exploratory disease mapping: kriging the spatial risk function from regional count data.
Int J Health Geogr. 2004 Aug 26;3(1):18. doi: 10.1186/1476-072X-3-18.
7
Spatiotemporal analysis of environmental exposure-health effect associations.
J Expo Anal Environ Epidemiol. 2000 Mar-Apr;10(2):168-87. doi: 10.1038/sj.jea.7500077.
8
Exploring spatial patterns of mortality: the new atlas of United States mortality.
Stat Med. 1999 Dec 15;18(23):3211-20. doi: 10.1002/(sici)1097-0258(19991215)18:23<3211::aid-sim311>3.0.co;2-q.
10
A study of the breast cancer dynamics in North Carolina.
Soc Sci Med. 1997 Nov;45(10):1503-17. doi: 10.1016/s0277-9536(97)00080-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验