Suppr超能文献

Synthesis and characterization of nanocrystalline gaN by ammonothermal method using CsNH2 as mineralizer.

作者信息

Lin Wenwen, Huang Jin, Chen Dagui, Lin Zhang, Li Wei, Huang Jiakui, Huang Feng

机构信息

Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.

出版信息

J Nanosci Nanotechnol. 2010 Sep;10(9):5741-5. doi: 10.1166/jnn.2010.2460.

Abstract

Nanocrystalline GaN was ammonothermally synthesized at 430 degrees C with CsNH2 as mineralizer. X-ray powder diffraction (XRD) analysis showed that the nanocrystalline GaN were of hexagonal structure. The average diameter of nanocrystalline GaN was about 4.5 nm according to Scherer's formula using the full-width at half-maximum (FWHM) of the (110) peak. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) observation confirmed the size distribution and phase state of the GaN nanocrystals. The calculated lattice parameters obtained both from XRD and High-Resolution Transmission Electron Microscopy (HRTEM) were a = 3.197 A, c = 5.195 A, which were larger than the highly crystallized GaN bulk crystal. Room temperature photoluminescence (PL) measurement exhibited a weak band-edge emission at about 390 nm (3.18 eV), indicating an obvious red-shift from the bandgap of bulk GaN (3.39 eV). A green luminescence (GL) emission located at 485 nm (2.56 eV) and a yellow luminescence (YL) defect-related emission peak centered at 553 nm (2.24 eV) were also observed. The advantage of using CsNH2 as mineralizer for growth GaN, the possible origins of the red-shift of bandgap, YL and GL band were discussed. The red-shift of the bandgap of the as-synthesized GaN nanocrystals was possibly attributed to the expansion of lattice parameters.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验