Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA.
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22338-43. doi: 10.1073/pnas.1016436107. Epub 2010 Dec 6.
Stems of dicotyledonous plants consist of an outer epidermis, a cortex, a ring of secondarily thickened vascular bundles and interfascicular cells, and inner pith parenchyma cells with thin primary walls. It is unclear how the different cell layers attain and retain their identities. Here, we show that WRKY transcription factors are in part responsible for the parenchymatous nature of the pith cells in dicotyledonous plants. We isolated mutants of Medicago truncatula and Arabidopsis thaliana with secondary cell wall thickening in pith cells associated with ectopic deposition of lignin, xylan, and cellulose, leading to an ∼50% increase in biomass density in stem tissue of the Arabidopsis mutants. The mutations are caused by disruption of stem-expressed WRKY transcription factor (TF) genes, which consequently up-regulate downstream genes encoding the NAM, ATAF1/2, and CUC2 (NAC) and CCCH type (C3H) zinc finger TFs that activate secondary wall synthesis. Direct binding of WRKY to the NAC gene promoter and repression of three downstream TFs were confirmed by in vitro assays and in planta transgenic experiments. Secondary wall-bearing cells form lignocellulosic biomass that is the source for second generation biofuel production. The discovery of negative regulators of secondary wall formation in pith opens up the possibility of significantly increasing the mass of fermentable cell wall components in bioenergy crops.
双子叶植物的茎由外表皮、皮层、次生加厚的维管束环和束间细胞以及薄壁的内髓实质细胞组成。不同的细胞层如何获得并保持其特性尚不清楚。在这里,我们表明 WRKY 转录因子部分负责双子叶植物中髓实质细胞的实质特性。我们分离到了 Medicago truncatula 和 Arabidopsis thaliana 的突变体,这些突变体的次生细胞壁在髓细胞中增厚,与木质素、木聚糖和纤维素的异位沉积有关,导致拟南芥突变体茎组织的生物量密度增加了约 50%。这些突变是由茎表达的 WRKY 转录因子(TF)基因的破坏引起的,这些基因随后上调了下游基因的表达,这些基因编码 NAM、ATAF1/2 和 CUC2(NAC)和 CCCH 型(C3H)锌指 TF,它们激活次生壁合成。通过体外测定和体内转基因实验证实了 WRKY 与 NAC 基因启动子的直接结合以及对三个下游 TF 的抑制作用。具有次生壁的细胞形成木质纤维素生物质,是第二代生物燃料生产的来源。在髓中发现次生壁形成的负调控因子为显著增加生物能源作物中可发酵细胞壁成分的质量提供了可能性。