Fontecave M, Gerez C, Mansuy D, Reichard P
Laboratoire d'Etudes Dynamiques de la Structure et de la Sélectivité, Université Joseph Fourier, Grenoble, France.
J Biol Chem. 1990 Jul 5;265(19):10919-24.
The active form of protein B2, the small subunit of ribonucleotide reductase from Escherichia coli, contains a binuclear ferric center and a free radical localized to tyrosine 122 of the polypeptide chain. MetB2 is an inactive form that lacks the tyrosine radical but retains the Fe(III) center. We earlier reported (Fontecave, M., Eliasson, R., and Reichard, P. (1989) J. Biol. Chem. 264, 9164-9170) that enzymes from E. coli interconvert B2 and metB2, possibly as part of a regulatory mechanism. Introduction of the tyrosyl radical into metB2 occurred in two steps: first, the Fe(III) center was reduced to Fe(II), generating "reduced B2"; next oxygen regenerated non-enzymatically both Fe(III) and the tyrosyl radical. Here we demonstrate that dithiothreitol (DTT) between pH 8 and 9.5 also slowly converts metB2 to B2 in the presence of oxygen. Also in this case the reaction occurs stepwise with reduced B2 as an intermediate. DTT reduces Fe(III) of both metB2 and B2. In the latter case this reaction is accompanied by the immediate loss of the tyrosyl radical. Our results indicate that the tyrosyl radical can exist only in the presence of an intact Fe(III) center. In reduced B2 iron is loosely bound to the protein, dissociates on standing and is readily removed by chelating agents. Binding decreases at higher pH. Loss of iron from reduced B2 explains why ferrous iron stimulates and iron chelators inhibit reactivation of metB2. We propose that the reactivation of mammalian ribonucleotide reductase by DTT (Thelander, M., Gräslund, A., and Thelander, L. (1983) Biochem. Biophys. Res. Commun. 110, 859-865) may proceed via a mechanism similar to the one found here for E. coli protein B2.
蛋白质B2是来自大肠杆菌的核糖核苷酸还原酶的小亚基,其活性形式含有一个双核铁中心和一个定位于多肽链酪氨酸122的自由基。MetB2是一种无活性形式,它缺乏酪氨酸自由基,但保留了Fe(III)中心。我们之前报道过(丰特卡夫,M.,埃利亚松,R.,和赖夏德,P.(1989年)《生物化学杂志》264卷,9164 - 9170页),大肠杆菌的酶可使B2和MetB2相互转化,这可能是一种调节机制的一部分。将酪氨酸自由基引入MetB2分两步进行:首先,Fe(III)中心被还原为Fe(II),生成“还原型B2”;接着,氧气非酶促地再生出Fe(III)和酪氨酸自由基。在此我们证明,在pH 8至9.5之间,二硫苏糖醇(DTT)在有氧气存在的情况下也能缓慢地将MetB2转化为B2。同样在这种情况下,反应也是分阶段进行的,以还原型B2为中间体。DTT可还原MetB2和B2的Fe(III)。在后一种情况下,该反应伴随着酪氨酸自由基的立即丧失。我们的结果表明,酪氨酸自由基仅能在完整的Fe(III)中心存在时才会存在。在还原型B2中,铁与蛋白质结合松散,静置时会解离,并且很容易被螯合剂去除。在较高pH下结合力会降低。还原型B2中铁的丧失解释了为什么亚铁离子会刺激MetB2的再活化,而铁螯合剂会抑制其再活化。我们提出,DTT对哺乳动物核糖核苷酸还原酶的再活化作用(特勒兰德,M.,格拉斯隆德,A.,和特勒兰德,L.(1983年)《生物化学与生物物理学研究通讯》110卷,859 - 865页)可能通过一种与我们在此发现的大肠杆菌蛋白质B2的机制类似的机制进行。