Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington, USA.
J Bacteriol. 2020 Sep 23;202(20). doi: 10.1128/JB.00319-20.
lacks the canonical genes required for the biosynthesis of -aminobenzoate (pABA), a component of essential folate cofactors. Previous studies revealed a single gene from , the CT610 gene, that rescues Δ, Δ, and Δ mutants, which are otherwise auxotrophic for pABA. CT610 shares low sequence similarity to nonheme diiron oxygenases, and the previously solved crystal structure revealed a diiron active site. Genetic studies ruled out several potential substrates for CT610-dependent pABA biosynthesis, including chorismate and other shikimate pathway intermediates, leaving the actual precursor(s) unknown. Here, we supplied isotopically labeled potential precursors to ΔA cells expressing CT610 and found that the aromatic portion of tyrosine was highly incorporated into pABA, indicating that tyrosine is a precursor for CT610-dependent pABA biosynthesis. Additionally, enzymatic experiments revealed that purified CT610 exhibits low pABA synthesis activity under aerobic conditions in the absence of tyrosine or other potential substrates, where only the addition of a reducing agent such as dithiothreitol appears to stimulate pABA production. Furthermore, site-directed mutagenesis studies revealed that two conserved active site tyrosine residues are essential for the pABA synthesis reaction Thus, the current data are most consistent with CT610 being a unique self-sacrificing enzyme that utilizes its own active site tyrosine residue(s) for pABA biosynthesis in a reaction that requires O and a reduced diiron cofactor. is the most reported sexually transmitted infection in the United States and the leading cause of infectious blindness worldwide. Unlike many other intracellular pathogens that have undergone reductive evolution, is capable of biosynthesis of the essential cofactor tetrahydrofolate using a noncanonical pathway. Here, we identify the biosynthetic precursor to the -aminobenzoate (pABA) portion of folate in a process that requires the CT610 enzyme from We further provide evidence that CT610 is a self-sacrificing or "suicide" enzyme that uses its own amino acid residue(s) as the substrate for pABA synthesis. This work provides the foundation for future investigation of this chlamydial pABA synthase, which could lead to new therapeutic strategies for infections.
该基因缺失合成 -氨基苯甲酸(pABA)所需的经典基因,而 pABA 是必需叶酸辅因子的组成部分。先前的研究表明,来自 的单个基因 CT610 可挽救 Δ、Δ 和 Δ 突变体,这些突变体 otherwise 对 pABA 是营养缺陷型的。CT610 与非血红素二铁加氧酶的序列相似性较低,先前解决的晶体结构显示出一个二铁活性位点。遗传研究排除了 CT610 依赖的 pABA 生物合成的几种潜在底物,包括分支酸和其他莽草酸途径中间体,使得实际前体(s)未知。在这里,我们向表达 CT610 的 ΔA 细胞提供了同位素标记的潜在前体,并发现酪氨酸的芳香部分高度掺入 pABA 中,表明酪氨酸是 CT610 依赖的 pABA 生物合成的前体。此外,酶实验表明,在有氧条件下,在没有酪氨酸或其他潜在底物的情况下,纯化的 CT610 表现出低的 pABA 合成活性,只有添加还原剂如二硫苏糖醇似乎才能刺激 pABA 的产生。此外,定点突变研究表明,两个保守的活性位点酪氨酸残基对于 pABA 合成反应是必不可少的。因此,目前的数据与 CT610 是一种独特的自我牺牲酶最一致,该酶利用其自身的活性位点酪氨酸残基(s)用于 pABA 生物合成反应,该反应需要 O 和还原的二铁辅因子。在美国是最常见的性传播感染,也是全球感染性失明的主要原因。与许多经历过还原进化的其他细胞内病原体不同, 能够使用非经典途径合成必需的辅因子四氢叶酸。在这里,我们确定了 生物合成叶酸中 -氨基苯甲酸(pABA)部分的前体,这一过程需要来自 的 CT610 酶。我们进一步提供了证据表明 CT610 是一种自我牺牲或“自杀”酶,它将自身的氨基酸残基(s)用作 pABA 合成的底物。这项工作为进一步研究这种衣原体 pABA 合酶奠定了基础,这可能为 感染的新治疗策略铺平道路。