Suppr超能文献

基于形状约束多分辨率选择线性预测器的鲁棒人脸特征跟踪。

Robust Facial Feature Tracking Using Shape-Constrained Multiresolution-Selected Linear Predictors.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2011 Sep;33(9):1844-59. doi: 10.1109/TPAMI.2010.205. Epub 2010 Dec 10.

Abstract

This paper proposes a learned data-driven approach for accurate, real-time tracking of facial features using only intensity information. The task of automatic facial feature tracking is nontrivial since the face is a highly deformable object with large textural variations and motion in certain regions. Existing works attempt to address these problems by either limiting themselves to tracking feature points with strong and unique visual cues (e.g., mouth and eye corners) or by incorporating a priori information that needs to be manually designed (e.g., selecting points for a shape model). The framework proposed here largely avoids the need for such restrictions by automatically identifying the optimal visual support required for tracking a single facial feature point. This automatic identification of the visual context required for tracking allows the proposed method to potentially track any point on the face. Tracking is achieved via linear predictors which provide a fast and effective method for mapping pixel intensities into tracked feature position displacements. Building upon the simplicity and strengths of linear predictors, a more robust biased linear predictor is introduced. Multiple linear predictors are then grouped into a rigid flock to further increase robustness. To improve tracking accuracy, a novel probabilistic selection method is used to identify relevant visual areas for tracking a feature point. These selected flocks are then combined into a hierarchical multiresolution LP model. Finally, we also exploit a simple shape constraint for correcting the occasional tracking failure of a minority of feature points. Experimental results show that this method performs more robustly and accurately than AAMs, with minimal training examples on example sequences that range from SD quality to Youtube quality. Additionally, an analysis of the visual support consistency across different subjects is also provided.

摘要

本文提出了一种基于学习的方法,仅使用强度信息即可实现准确、实时的面部特征跟踪。自动面部特征跟踪的任务并不简单,因为面部是一个高度可变形的物体,具有很大的纹理变化和某些区域的运动。现有的工作尝试通过以下方法来解决这些问题:要么限制自己跟踪具有强烈和独特视觉线索的特征点(例如,嘴角和眼角),要么结合需要手动设计的先验信息(例如,为形状模型选择点)。这里提出的框架在很大程度上避免了这种限制的需要,而是自动识别跟踪单个面部特征点所需的最佳视觉支持。这种对跟踪所需视觉上下文的自动识别允许所提出的方法有可能跟踪面部上的任何点。跟踪是通过线性预测器实现的,线性预测器为将像素强度映射到跟踪的特征位置位移提供了一种快速有效的方法。基于线性预测器的简单性和优势,引入了更稳健的有偏线性预测器。然后将多个线性预测器分组到刚性 flock 中以进一步提高稳健性。为了提高跟踪精度,使用一种新颖的概率选择方法来识别用于跟踪特征点的相关视觉区域。然后将这些选择的 flock 组合到层次化多分辨率 LP 模型中。最后,我们还利用简单的形状约束来纠正少数特征点偶尔的跟踪失败。实验结果表明,与 AAMs 相比,该方法具有更高的鲁棒性和准确性,在从 SD 质量到 Youtube 质量的示例序列上只需最小的训练示例。此外,还提供了对不同对象之间视觉支持一致性的分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验