Suppr超能文献

长期在线多面孔跟踪的轨迹创建和删除框架。

Track creation and deletion framework for long-term online multiface tracking.

机构信息

Idiap Research Institute, Martigny 1920, Switzerland.

出版信息

IEEE Trans Image Process. 2013 Jan;22(1):272-85. doi: 10.1109/TIP.2012.2210238. Epub 2012 Jul 25.

Abstract

To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, such as adaptation or contextual models. A complementary approach consists of improving the track management, that is, deciding when to add a target or stop its tracking, for example, in case of failure. This is an essential component for effective multiobject tracking applications, and is often not trivial. Deciding whether or not to stop a track is a compromise between avoiding erroneous early stopping while tracking is fine, and erroneous continuation of tracking when there is an actual failure. This decision process, very rarely addressed in the literature, is difficult due to object detector deficiencies or observation models that are insufficient to describe the full variability of tracked objects and deliver reliable likelihood (tracking) information. This paper addresses the track management issue and presents a real-time online multiface tracking algorithm that effectively deals with the above difficulties. The tracking itself is formulated in a multiobject state-space Bayesian filtering framework solved with Markov Chain Monte Carlo. Within this framework, an explicit probabilistic filtering step decides when to add or remove a target from the tracker, where decisions rely on multiple cues such as face detections, likelihood measures, long-term observations, and track state characteristics. The method has been applied to three challenging data sets of more than 9 h in total, and demonstrate a significant performance increase compared to more traditional approaches (Markov Chain Monte Carlo, reversible-jump Markov Chain Monte Carlo) only relying on head detection and likelihood for track management.

摘要

为了提高视觉跟踪的性能,许多文献研究了更强大的特征,或更好的线索融合机制,如自适应或上下文模型。一种补充方法是改进跟踪管理,即决定何时添加目标或停止其跟踪,例如在跟踪失败的情况下。这是多目标跟踪应用的一个重要组成部分,而且通常并不简单。决定是否停止跟踪是在避免错误的过早停止(即跟踪良好时)和错误的继续跟踪(即实际失败时)之间的一种权衡。这个决策过程在文献中很少被提及,由于目标检测器的缺陷或观测模型不足以描述跟踪对象的全部变化,因此难以提供可靠的可能性(跟踪)信息,因此这个决策过程非常困难。本文解决了跟踪管理问题,并提出了一种实时在线多面孔跟踪算法,有效地解决了上述困难。跟踪本身是在多目标状态空间贝叶斯滤波框架中进行的,通过马尔可夫链蒙特卡罗方法进行求解。在这个框架中,一个显式的概率滤波步骤决定何时从跟踪器中添加或删除目标,决策依赖于多个线索,如人脸检测、可能性度量、长期观测和跟踪状态特征。该方法已应用于三个具有挑战性的数据集,总时长超过 9 小时,与仅依赖头部检测和可能性进行跟踪管理的更传统方法(马尔可夫链蒙特卡罗、可逆跳转马尔可夫链蒙特卡罗)相比,性能有了显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验