Facet Biotech, Redwood City, CA, USA.
Proteomics Clin Appl. 2010 Sep;4(8-9):726-38. doi: 10.1002/prca.200900206.
We investigated the ability to perform a clinical proteomic study using samples collected at different times from two independent clinical sites.
Label-free 2-D-LC-MS proteomic analysis was used to differentially quantify tens of thousands of peptides from human plasma. We have asked whether samples collected from two sites, when analyzed by this type of peptide profiling, reproducibly contain detectable peptide markers that are differentially expressed in the plasma of disease (advanced renal cancer) patients relative to healthy normals.
We have demonstrated that plasma proteins enriched in disease patients are indeed detected reproducibly in both clinical collections. Regression analysis, unsupervised hierarchical clustering and PCA detected no systematic bias in the data related to site of sample collection and processing. Using a genetic algorithm, support vector machine classification method, we were able to correctly classify disease samples at 88% sensitivity and 94% specificity using the second site as an independent validation set.
We conclude that multiple site collection, when analyzed by label-free 2-D-LC-MS, generates data that are sufficiently reproducible to guide reliable biomarker discovery.
我们研究了使用从两个独立临床站点收集的不同时间点的样本进行临床蛋白质组学研究的能力。
使用无标记的 2D-LC-MS 蛋白质组学分析来差异定量来自人血浆的数万种肽。我们已经询问了从两个站点收集的样本,当通过这种类型的肽谱分析时,是否可重复性地包含可检测的肽标志物,这些标志物在疾病(晚期肾癌)患者的血浆中与健康正常者相比存在差异表达。
我们已经证明,在两种临床采集物中都可重复地检测到富含疾病患者的血浆蛋白。回归分析、无监督层次聚类和 PCA 未检测到与样本采集和处理的站点相关的系统偏差。使用遗传算法、支持向量机分类方法,我们能够使用第二站点作为独立验证集,以 88%的敏感性和 94%的特异性正确分类疾病样本。
我们得出结论,当通过无标记的 2D-LC-MS 进行分析时,多站点采集可产生足够可重复的数据,以指导可靠的生物标志物发现。