Suppr超能文献

自动化选择具有理化性质的化合物,以最大限度地提高生物利用度和类药性。

Automated selection of compounds with physicochemical properties to maximize bioavailability and druglikeness.

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, Baltimore, Maryland 21201, United States.

出版信息

J Chem Inf Model. 2011 Jan 24;51(1):148-58. doi: 10.1021/ci100359a. Epub 2010 Dec 6.

Abstract

Adequate bioavailability is one of the essential properties for an orally administered drug. Lipinski and others have formulated simplified rules in which compounds that satisfy selected physiochemical properties, for example, molecular weight (MW) ≤ 500 or the logarithm of the octanol-water partition coefficient, log P(o/w) < 5, are anticipated to likely have pharmacokinetic properties appropriate for oral administration. However, these schemes do not simultaneously consider the combination of the physiochemical properties, complicating their application in a more automated fashion. To overcome this, we present a novel method to select compounds with a combination of physicochemical properties that maximize bioavailability and druglikeness based on compounds in the World Drug Index database. In the study four properties, MW, log P(o/w), number of hydrogen bond donors, and number of hydrogen acceptors, were combined into a 4-dimensional (4D) histogram, from which a scoring function was defined on the basis of a 4D dependent multivariate Gaussian model. The resulting equation allows for assigning compounds a bioavailability score, termed 4D-BA, such that chemicals with higher 4D-BA scores are more likely to have oral druglike characteristics. The descriptor is validated by applying the function to drugs previously categorized in the Biopharmaceutics Classification System, and examples of application of the descriptor are given in the context of previously published studies targeting heme oxygenase and SHP2 phosphatase. The approach is anticipated to be useful in early lead identification studies in combination with clustering methods to maximize chemical and structural diversity when selecting compounds for biological assays from large database screens. It may also be applied to prioritize synthetically feasible chemical modifications during lead compound optimization.

摘要

足够的生物利用度是口服药物的基本性质之一。Lipinski 等人提出了简化规则,满足某些物理化学性质的化合物,例如分子量 (MW)≤500 或辛醇-水分配系数的对数,log P(o/w)<5,预计具有适合口服给药的药代动力学性质。然而,这些方案并没有同时考虑物理化学性质的组合,这使得它们在更自动化的方式下应用变得复杂。为了解决这个问题,我们提出了一种新的方法,根据世界药物索引数据库中的化合物,选择具有最大生物利用度和类药性的物理化学性质组合的化合物。在这项研究中,MW、log P(o/w)、氢键供体数量和氢键受体数量四个性质被组合成一个 4 维 (4D) 直方图,从中基于 4D 依赖多元高斯模型定义了一个评分函数。由此产生的方程允许为化合物分配一个生物利用度评分,称为 4D-BA,具有较高 4D-BA 评分的化合物更有可能具有口服药物特征。该描述符通过将函数应用于先前在生物药剂学分类系统中分类的药物进行验证,并在针对血红素加氧酶和 SHP2 磷酸酶的先前发表的研究的背景下给出了该描述符的应用示例。该方法有望与聚类方法结合,在从大型数据库筛选中选择用于生物测定的化合物时,在早期的先导化合物识别研究中有用,以最大化化学和结构多样性。它也可以应用于在先导化合物优化期间优先考虑合成上可行的化学修饰。

相似文献

2
Property distribution of drug-related chemical databases.药物相关化学数据库的属性分布
J Comput Aided Mol Des. 2000 Mar;14(3):251-64. doi: 10.1023/a:1008130001697.

引用本文的文献

5
Identification of a Potent Human Trace Amine-Associated Receptor 1 Antagonist.鉴定一种有效的人类痕迹胺相关受体 1 拮抗剂。
ACS Chem Neurosci. 2022 Apr 6;13(7):1082-1095. doi: 10.1021/acschemneuro.2c00086. Epub 2022 Mar 24.

本文引用的文献

9
Pursuing the leadlikeness concept in pharmaceutical research.在药物研究中追求类先导物概念。
Curr Opin Chem Biol. 2004 Jun;8(3):255-63. doi: 10.1016/j.cbpa.2004.04.003.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验