Baker Medical Research Institute, Prahran, Victoria, Australia.
Clin Exp Pharmacol Physiol. 1996 Sep;23 Suppl 3:S93-8. doi: 10.1111/j.1440-1681.1996.tb02820.x.
在许多物种中,人们在延髓头端腹外侧区(RVLM)中发现了高浓度的血管紧张素 II(AngII)受体,该区域是调节交感血管张力的重要区域。本综述描述了在清醒和麻醉兔中检查脑干部位血管紧张素受体对心血管调节,特别是对交感血管反射的影响的研究。
在清醒的兔子中,第四脑室输注 AngII 产生了剂量依赖性的升压反应,其剂量是等压静脉剂量的 400 倍。慢性压力感受器去神经支配使 AngII 的敏感性增加了 1000 倍。静脉注射哌唑嗪可阻断升压反应,表明涉及的机制是交感血管收缩。
向第四脑室(4V)注射 AngII 引起的血液动力学变化模式涉及总外周电导和肠系膜电导降低,但后肢电导升高。主动脉弓切断术改变了后肢电导的下降,使其变为增加,这表明肌肉血管运动途径特别受到压力感受器反馈机制的抑制。
在麻醉的兔子中,将 AngII 输注到 RVLM 会增加血压,并短暂增加静息肾交感神经活动。肾交感神经反射曲线向右侧移位,交感反射增加的上平台显著增加。
4V AngII 的升压作用被 RVLM 中注入的肽拮抗剂或 4V 中注入的血管紧张素 AT(1)拮抗剂氯沙坦阻断。这些结果表明,主要是 AT(1)受体参与,RVLM 可能是调节肾交感神经反射的候选部位。
在清醒的兔子中,氯沙坦注入第四脑室可增加静息肾交感神经张力,并增强肾交感神经反射和化学反射。
我们的研究表明,RVLM 中存在对来自脑脊液的 AngII 具有兴奋性的 AT(1)受体。此外,AT(1)受体途径通常会抑制由压力感受器卸载或化学感受器激活引起的交感兴奋。氯沙坦的作用表明,抑制性途径中存在更大的紧张性活动。这两种作用表明,脑干部位的血管紧张素受体调节对特定传入输入的交感反应,从而形成了特征性自主反应模式整合的潜在重要机制的一部分。