Suppr超能文献

从地理巧合推断社会关系。

Inferring social ties from geographic coincidences.

机构信息

School of Informatics and Computing, Indiana University, Bloomington, IN 47403, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22436-41. doi: 10.1073/pnas.1006155107. Epub 2010 Dec 8.

Abstract

We investigate the extent to which social ties between people can be inferred from co-occurrence in time and space: Given that two people have been in approximately the same geographic locale at approximately the same time, on multiple occasions, how likely are they to know each other? Furthermore, how does this likelihood depend on the spatial and temporal proximity of the co-occurrences? Such issues arise in data originating in both online and offline domains as well as settings that capture interfaces between online and offline behavior. Here we develop a framework for quantifying the answers to such questions, and we apply this framework to publicly available data from a social media site, finding that even a very small number of co-occurrences can result in a high empirical likelihood of a social tie. We then present probabilistic models showing how such large probabilities can arise from a natural model of proximity and co-occurrence in the presence of social ties. In addition to providing a method for establishing some of the first quantifiable estimates of these measures, our findings have potential privacy implications, particularly for the ways in which social structures can be inferred from public online records that capture individuals' physical locations over time.

摘要

我们研究了从时间和空间的共同出现中推断人与人之间社会关系的程度

如果两个人在多次、大约相同的地理位置、大约相同的时间出现,他们认识彼此的可能性有多大?此外,这种可能性如何取决于共同出现的时空接近程度?这些问题出现在在线和离线数据以及捕捉在线和离线行为之间接口的设置中。在这里,我们开发了一个框架来量化这些问题的答案,并将该框架应用于社交媒体网站上的公开数据,结果发现,即使只有很少的几次共同出现,也会导致社会关系的实际可能性很高。然后,我们提出了概率模型,展示了在存在社会关系的情况下,如何从接近度和共同出现的自然模型中产生如此高的概率。除了提供一种方法来确定这些度量标准的第一批可量化估计值之外,我们的发现还具有潜在的隐私影响,特别是对于可以从捕捉个人随时间变化的物理位置的公共在线记录中推断社会结构的方式。

相似文献

1
Inferring social ties from geographic coincidences.从地理巧合推断社会关系。
Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22436-41. doi: 10.1073/pnas.1006155107. Epub 2010 Dec 8.
5
Spreading gossip in social networks.在社交网络中传播流言蜚语。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 2):036117. doi: 10.1103/PhysRevE.76.036117. Epub 2007 Sep 27.
8
Coupling human mobility and social ties.将人类流动性与社会关系相联系。
J R Soc Interface. 2015 Apr 6;12(105). doi: 10.1098/rsif.2014.1128.

引用本文的文献

3
Social connections and the healthfulness of food choices in an employee population.社交关系与员工群体中健康食品选择。
Nat Hum Behav. 2021 Oct;5(10):1349-1357. doi: 10.1038/s41562-021-01103-x. Epub 2021 Apr 22.
8
Quantifying segregation in an integrated urban physical-social space.量化一体化城市物理-社会空间中的隔离程度。
J R Soc Interface. 2019 Nov 29;16(160):20190536. doi: 10.1098/rsif.2019.0536. Epub 2019 Nov 20.

本文引用的文献

1
Spatial generalization and aggregation of massive movement data.大规模运动数据的空间泛化和聚合。
IEEE Trans Vis Comput Graph. 2011 Feb;17(2):205-19. doi: 10.1109/TVCG.2010.44.
2
Inferring friendship network structure by using mobile phone data.利用手机数据推断友谊网络结构。
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15274-8. doi: 10.1073/pnas.0900282106. Epub 2009 Aug 17.
3
Predicting Social Security numbers from public data.从公开数据预测社会保障号码。
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):10975-80. doi: 10.1073/pnas.0904891106. Epub 2009 Jul 6.
4
Understanding individual human mobility patterns.理解个体的人类移动模式。
Nature. 2008 Jun 5;453(7196):779-82. doi: 10.1038/nature06958.
5
The scaling laws of human travel.人类出行的比例定律。
Nature. 2006 Jan 26;439(7075):462-5. doi: 10.1038/nature04292.
6
The experience of living in cities.城市生活体验。
Science. 1970 Mar 13;167(3924):1461-8. doi: 10.1126/science.167.3924.1461.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验