Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
Appl Environ Microbiol. 2011 Feb;77(3):1086-96. doi: 10.1128/AEM.01698-10. Epub 2010 Dec 10.
Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.
多维复合稳定同位素分析 (CSIA) 与基于 RNA 的分子工具相结合,用于表征用于修复受 MTBE 污染地下水的曝气处理池中生物膜中发生的甲基叔丁基醚 (MTBE) 降解机制。通过将微宇宙实验中观察到的低水平稳定同位素分馏(平均碳同位素富集因子 [ε(C)] -0.37‰±0.05‰,且无明显的氢同位素富集因子 [ε(H)])与能够催化生物膜样品中 MTBE 氧化的细胞色素 P450 单加氧酶编码基因 ethB 的表达联系起来,阐明了 MTBE 氧化的主要途径。ethB 基因在微宇宙和直接从池塘中获得的生物膜样本中都能表达。16S rRNA 特异性引物揭示了存在与甲基杆菌 PM1 完全相同的序列,甲基杆菌 PM1 是一种经过充分研究的 MTBE 降解菌。然而,既没有检测到负责该菌株中 MTBE 氧化的烷烃羟化酶样酶 mdpA 基因的表达,也没有检测到 PM1 产生的相关 MTBE 同位素分馏模式,这表明该酶在该系统中没有活性。此外,在模拟从开放地表水体中去除 MTBE 的实验室实验中观察到的碳的低反分馏(ε(C)为+0.11‰±0.03‰)和氢的低分馏(ε(H)为-5‰±1‰)表明,在检测生物降解的现场调查中应用 CSIA 可能会导致在挥发作用与低分馏酶的活性同时发生时产生假阴性结果。如本研究所示,对特定降解基因表达的互补检查可用作微生物降解活性的额外直接证据,并可能克服此问题。