Suppr超能文献

铜绿假单胞菌中,一个由两个组件构成的调控系统将多黏菌素、氨基糖苷类、氟喹诺酮类和β-内酰胺类抗生素的耐药性联系起来。

A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa.

机构信息

Laboratoire de Bactériologie, Faculté de Médecine, Université de Franche-Comté, 25030 Besançon, France.

出版信息

Antimicrob Agents Chemother. 2011 Mar;55(3):1211-21. doi: 10.1128/AAC.01252-10. Epub 2010 Dec 13.

Abstract

Constitutive overexpression of the active efflux system MexXY/OprM is a major cause of resistance to aminoglycosides, fluoroquinolones, and cefepime in clinical strains of Pseudomonas aeruginosa. Upregulation of this pump often results from mutations occurring in mexZ, the local repressor gene of the mexXY operon. In this study, analysis of MexXY-overproducing mutants selected in vitro from reference strain PAO1Bes on amikacin (at a concentration 1.5-fold higher than the MIC) led to identification of a new class of mutants harboring an intact mexZ gene and exhibiting increased resistance to colistin and imipenem in addition to aminoglycosides, fluoroquinolones, and cefepime. Reverse transcription-quantitative PCR (RT-qPCR) experiments on a selected clone named PAOW2 demonstrated that mexXY overexpression was independent of mexZ and the PA5471 gene, which is required for drug-dependent induction of mexXY. Furthermore, the transcript levels of the oprD gene, which encodes the carbapenem-selective porin OprD, were found to be reduced drastically in PAOW2. Whole-genome sequencing revealed a single mutation resulting in an M59I substitution in the ParR protein, the response regulator of the ParRS two-component regulatory system (with ParS being the sensor kinase), which is required for adaptive resistance of P. aeruginosa to polycationic peptides such as colistin. The multidrug resistance phenotype was suppressed in PAOW2 by deletion of the parS and parRS genes and conferred to PAO1Bes by chromosomal insertion of the mutated parRS locus from PAOW2. As shown by transcriptomic analysis, only a very small number of genes were expressed differentially between PAOW2 and PAO1Bes, including the lipopolysaccharide (LPS) modification operon arnBCADTEF-ugd, responsible for resistance to polycationic agents. Exposure of wild-type PAO1Bes to different polycationic peptides, including colistin, was shown to result in increased mexY and repressed oprD expression via ParRS, independent of PA5471. In agreement with these results, colistin antagonized activity of the MexXY/OprM substrates in PAO1Bes but not in a ΔparRS derivative. Finally, screening of clinical strains exhibiting the PAOW2 resistance phenotype allowed the identification of additional alterations in ParRS. Collectively, our data indicate that ParRS may promote either induced or constitutive multidrug resistance to four different classes of antibiotics through the activation of three distinct mechanisms (efflux, porin loss, and LPS modification).

摘要

组成型过度表达主动外排系统 MexXY/OprM 是导致铜绿假单胞菌临床分离株对氨基糖苷类、氟喹诺酮类和头孢吡肟耐药的主要原因。这种泵的上调通常是由于 mexZ 基因发生突变所致,mexZ 是 mexXY 操纵子的局部阻遏基因。在这项研究中,我们分析了在参考菌株 PAO1Bes 上通过氨基糖苷类抗生素(浓度比 MIC 高 1.5 倍)选择的MexXY 过表达突变体,发现了一类新的突变体,它们携带完整的 mexZ 基因,并表现出对多粘菌素和亚胺培南的耐药性增加,除了对氨基糖苷类、氟喹诺酮类和头孢吡肟的耐药性增加。对一个名为 PAOW2 的选定克隆进行的反转录定量 PCR (RT-qPCR) 实验表明,MexXY 的过度表达不依赖于 mexZ 和 PA5471 基因,后者是 mexXY 药物依赖性诱导所必需的。此外,编码碳青霉烯类选择性孔蛋白 OprD 的 oprD 基因的转录水平在 PAOW2 中明显降低。全基因组测序揭示了一个单一的突变,导致 ParR 蛋白中的 M59I 取代,ParR 蛋白是 ParRS 双组分调节系统的反应调节剂(ParS 是传感器激酶),这是铜绿假单胞菌对多阳离子肽(如多粘菌素)产生适应性耐药所必需的。在 PAOW2 中缺失 parS 和 parRS 基因可抑制多药耐药表型,并通过染色体插入 PAOW2 中突变的 parRS 基因座赋予 PAO1Bes。转录组分析表明,PAOW2 和 PAO1Bes 之间只有少数基因表达差异,包括脂多糖 (LPS) 修饰操纵子 arnBCADTEF-ugd,该操纵子负责对多阳离子剂的耐药性。多阳离子肽(包括多粘菌素)暴露野生型 PAO1Bes 导致 mexY 表达增加,oprD 表达受 ParRS 抑制,与 PA5471 无关。与这些结果一致,多粘菌素拮抗了 MexXY/OprM 底物在 PAO1Bes 中的活性,但在 ΔparRS 衍生物中没有。最后,对表现出 PAOW2 耐药表型的临床分离株进行筛选,发现了 ParRS 中的其他改变。总的来说,我们的数据表明,ParRS 可能通过激活三种不同的机制(外排、孔蛋白缺失和 LPS 修饰),促进四种不同类抗生素的诱导或组成型多药耐药。

相似文献

2
Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2014;58(1):221-8. doi: 10.1128/AAC.01252-13. Epub 2013 Oct 21.
4
Production of Norspermidine Contributes to Aminoglycoside Resistance in Mutants of Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2019 Sep 23;63(10). doi: 10.1128/AAC.01044-19. Print 2019 Oct.
5
Adaptive resistance to cationic compounds in Pseudomonas aeruginosa.
Int J Antimicrob Agents. 2011 Mar;37(3):187-93. doi: 10.1016/j.ijantimicag.2010.11.019. Epub 2011 Feb 4.
6
Efflux unbalance in Pseudomonas aeruginosa isolates from cystic fibrosis patients.
Antimicrob Agents Chemother. 2009 May;53(5):1987-97. doi: 10.1128/AAC.01024-08. Epub 2009 Mar 2.
10
Reduced expression of the rplU-rpmA ribosomal protein operon in mexXY-expressing pan-aminoglycoside-resistant mutants of pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2012 Oct;56(10):5171-9. doi: 10.1128/AAC.00846-12. Epub 2012 Jul 23.

引用本文的文献

2
Unlocking Enhanced Efficacy of Aminoglycoside Antibiotics Against Pseudomonas aeruginosa.
Microb Biotechnol. 2025 Jun;18(6):e70174. doi: 10.1111/1751-7915.70174.
3
Differences in antimicrobial resistance between exoU and exoS isolates of Pseudomonas aeruginosa.
Eur J Clin Microbiol Infect Dis. 2025 Apr 22. doi: 10.1007/s10096-025-05132-6.
4
Regulation, structure, and activity of the MexXY efflux system.
Antimicrob Agents Chemother. 2025 Apr 7;69(5):e0182524. doi: 10.1128/aac.01825-24.
5
Interplay between porin deficiency, fitness, and virulence in carbapenem-non-susceptible Pseudomonas aeruginosa and Enterobacteriaceae.
PLoS Pathog. 2025 Feb 7;21(2):e1012902. doi: 10.1371/journal.ppat.1012902. eCollection 2025 Feb.
7
Comparative phenotypic and proteomic analysis of colistin-exposed .
Germs. 2024 Sep 30;14(3):246-266. doi: 10.18683/germs.2024.1436. eCollection 2024 Sep.
8
Insights into Kinases of ESKAPE Pathogens for Therapeutic Interventions.
Cardiovasc Hematol Agents Med Chem. 2024;22(3):276-297. doi: 10.2174/0118715257267497231128093529.
9
Cefiderocol susceptibility endows hope in treating carbapenem-resistant : insights from and evidence.
RSC Adv. 2024 Jul 8;14(30):21328-21341. doi: 10.1039/d4ra04302b. eCollection 2024 Jul 5.
10
Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications.
Microb Biotechnol. 2024 May;17(5):e14487. doi: 10.1111/1751-7915.14487.

本文引用的文献

2
Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains.
J Bacteriol. 2010 Feb;192(4):1113-21. doi: 10.1128/JB.01515-09. Epub 2009 Dec 18.
3
Fmt bypass in Pseudomonas aeruginosa causes induction of MexXY efflux pump expression.
Antimicrob Agents Chemother. 2009 Dec;53(12):5015-21. doi: 10.1128/AAC.00253-09. Epub 2009 Sep 28.
6
Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health.
Am J Respir Crit Care Med. 2007 Nov 15;176(10):957-69. doi: 10.1164/rccm.200705-664OC. Epub 2007 Aug 29.
7
Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections.
Antimicrob Agents Chemother. 2007 Oct;51(10):3531-6. doi: 10.1128/AAC.00503-07. Epub 2007 Aug 6.
8
Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides.
Antimicrob Agents Chemother. 2007 Mar;51(3):1016-21. doi: 10.1128/AAC.00704-06. Epub 2006 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验