Suppr超能文献

铜绿假单胞菌 PAO1 实验室菌株的基因组多样性。

Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains.

机构信息

Klinische Forschergruppe, Medizinische Hochschule Hannover, Hannover, Germany.

出版信息

J Bacteriol. 2010 Feb;192(4):1113-21. doi: 10.1128/JB.01515-09. Epub 2009 Dec 18.

Abstract

Pseudomonas aeruginosa PAO1 is the most commonly used strain for research on this ubiquitous and metabolically versatile opportunistic pathogen. Strain PAO1, a derivative of the original Australian PAO isolate, has been distributed worldwide to laboratories and strain collections. Over decades discordant phenotypes of PAO1 sublines have emerged. Taking the existing PAO1-UW genome sequence (named after the University of Washington, which led the sequencing project) as a blueprint, the genome sequences of reference strains MPAO1 and PAO1-DSM (stored at the German Collection for Microorganisms and Cell Cultures [DSMZ]) were resolved by physical mapping and deep short read sequencing-by-synthesis. MPAO1 has been the source of near-saturation libraries of transposon insertion mutants, and PAO1-DSM is identical in its SpeI-DpnI restriction map with the original isolate. The major genomic differences of MPAO1 and PAO1-DSM in comparison to PAO1-UW are the lack of a large inversion, a duplication of a mobile 12-kb prophage region carrying a distinct integrase and protein phosphatases or kinases, deletions of 3 to 1,006 bp in size, and at least 39 single-nucleotide substitutions, 17 of which affect protein sequences. The PAO1 sublines differed in their ability to cope with nutrient limitation and their virulence in an acute murine airway infection model. Subline PAO1-DSM outnumbered the two other sublines in late stationary growth phase. In conclusion, P. aeruginosa PAO1 shows an ongoing microevolution of genotype and phenotype that jeopardizes the reproducibility of research. High-throughput genome resequencing will resolve more cases and could become a proper quality control for strain collections.

摘要

铜绿假单胞菌 PAO1 是研究这种普遍存在且代谢多样的机会性病原体的最常用菌株。PAO1 菌株是原始澳大利亚 PAO 分离株的衍生物,已在全球范围内分发给实验室和菌株收藏机构。几十年来,PAO1 亚系出现了不一致的表型。以现有的 PAO1-UW 基因组序列(以领导测序项目的华盛顿大学命名)为蓝图,通过物理图谱和深度短读测序-合成解决了参考菌株 MPAO1 和 PAO1-DSM(存储在德国微生物和细胞培养物收藏中心 [DSMZ])的基因组序列。MPAO1 一直是转座子插入突变体近饱和文库的来源,而 PAO1-DSM 在 SpeI-DpnI 限制图谱上与原始分离株完全相同。与 PAO1-UW 相比,MPAO1 和 PAO1-DSM 的主要基因组差异是缺乏大型倒位、携带独特整合酶和蛋白磷酸酶或激酶的移动 12kb 噬菌体区域的重复、大小为 3 到 1006bp 的缺失以及至少 39 个单核苷酸取代,其中 17 个影响蛋白质序列。PAO1 亚系在应对营养限制的能力和急性鼠气道感染模型中的毒力方面存在差异。在晚期静止生长阶段,PAO1-DSM 亚系的数量超过了另外两个亚系。总之,铜绿假单胞菌 PAO1 表现出基因型和表型的持续微进化,这危及了研究的可重复性。高通量基因组重测序将解决更多案例,并可能成为菌株收藏的适当质量控制。

相似文献

1
Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains.
J Bacteriol. 2010 Feb;192(4):1113-21. doi: 10.1128/JB.01515-09. Epub 2009 Dec 18.
2
Ongoing evolution of Pseudomonas aeruginosa PAO1 sublines complicates studies of DNA damage repair and tolerance.
Mutat Res. 2017 Mar;797-799:26-37. doi: 10.1016/j.mrfmmm.2017.03.005. Epub 2017 Mar 16.
3
Genomic and Phenotypic Diversity among Ten Laboratory Isolates of PAO1.
J Bacteriol. 2019 Feb 11;201(5). doi: 10.1128/JB.00595-18. Print 2019 Mar 1.
5
is an indicator of PAO1 strain integrity.
J Med Microbiol. 2020 Jan;69(1):139-145. doi: 10.1099/jmm.0.001128. Epub 2019 Dec 18.
8
Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa.
J Bacteriol. 2001 Feb;183(3):843-53. doi: 10.1128/JB.183.3.843-853.2001.
9
Fitness of isogenic colony morphology variants of Pseudomonas aeruginosa in murine airway infection.
PLoS One. 2008 Feb 27;3(2):e1685. doi: 10.1371/journal.pone.0001685.

引用本文的文献

1
Regulation of filamentous phage Pf4 activation by oxidative stress in .
mLife. 2025 Aug 25;4(4):437-446. doi: 10.1002/mlf2.70031. eCollection 2025 Aug.
2
Crosstalk between inovirus core gene and accessory toxin-antitoxin system mediates polylysogeny.
Nat Commun. 2025 Aug 7;16(1):7268. doi: 10.1038/s41467-025-62378-6.
3
A Chemostat-Based Model for Growing Bacterial Biofilms.
bioRxiv. 2025 Jun 23:2025.06.22.660958. doi: 10.1101/2025.06.22.660958.
4
Genotypic and phenotypic analyses of two distinct sets of urinary tract isolates.
J Med Microbiol. 2025 Feb;74(2). doi: 10.1099/jmm.0.001971.
5
Menadione as Antibiotic Adjuvant Against : Mechanism of Action, Efficacy and Safety.
Antibiotics (Basel). 2025 Feb 7;14(2):163. doi: 10.3390/antibiotics14020163.
6
Antibiotic resistance alters the ability of to invade bacteria from the respiratory microbiome.
Evol Lett. 2024 Jun 30;8(5):735-747. doi: 10.1093/evlett/qrae030. eCollection 2024 Sep.
7
'Wild Type'.
Microbiology (Reading). 2024 Aug;170(8). doi: 10.1099/mic.0.001495.
8
Control of lysogeny and antiphage defense by a prophage-encoded kinase-phosphatase module.
Nat Commun. 2024 Aug 23;15(1):7244. doi: 10.1038/s41467-024-51617-x.
9
Lytic transglycosylase Slt of Pseudomonas aeruginosa as a periplasmic hub protein.
Protein Sci. 2024 Jul;33(7):e5038. doi: 10.1002/pro.5038.
10
Variation in the response to antibiotics and life-history across the major clone type (mPact) panel.
Microbiol Spectr. 2024 Jul 2;12(7):e0014324. doi: 10.1128/spectrum.00143-24. Epub 2024 Jun 11.

本文引用的文献

1
Cooperation and virulence of clinical Pseudomonas aeruginosa populations.
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6339-44. doi: 10.1073/pnas.0811741106. Epub 2009 Mar 30.
2
The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome.
J Mol Biol. 2009 Feb 27;386(3):802-13. doi: 10.1016/j.jmb.2008.12.071. Epub 2009 Jan 6.
4
The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage.
ISME J. 2009 Mar;3(3):271-82. doi: 10.1038/ismej.2008.109. Epub 2008 Nov 13.
5
Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes.
Nucleic Acids Res. 2009 Jan;37(Database issue):D483-8. doi: 10.1093/nar/gkn861. Epub 2008 Oct 31.
6
The role of GTP in transient splitting of 70S ribosomes by RRF (ribosome recycling factor) and EF-G (elongation factor G).
Nucleic Acids Res. 2008 Dec;36(21):6676-87. doi: 10.1093/nar/gkn647. Epub 2008 Oct 23.
7
Detection of small RNAs in Pseudomonas aeruginosa by RNomics and structure-based bioinformatic tools.
Microbiology (Reading). 2008 Oct;154(Pt 10):3175-3187. doi: 10.1099/mic.0.2008/019703-0.
8
Applications of next-generation sequencing technologies in functional genomics.
Genomics. 2008 Nov;92(5):255-64. doi: 10.1016/j.ygeno.2008.07.001. Epub 2008 Aug 24.
9
EagleView: a genome assembly viewer for next-generation sequencing technologies.
Genome Res. 2008 Sep;18(9):1538-43. doi: 10.1101/gr.076067.108. Epub 2008 Jun 11.
10
Transcript profiling of the Pseudomonas aeruginosa genomic islands PAGI-2 and pKLC102.
Microbiology (Reading). 2008 Jun;154(Pt 6):1599-1604. doi: 10.1099/mic.0.2007/014340-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验