Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, Taiwan.
Nanotechnology. 2011 Jan 21;22(3):035704. doi: 10.1088/0957-4484/22/3/035704. Epub 2010 Dec 9.
Well-aligned amorphous carbon nanotube (a-CNT) and porous ZnO/C core-shell nanorod (NR) arrays were fabricated for the first time by a proposed deposition-etching-evaporation (DEE) route. The arrays were prepared by deposition of carbon on the surface of well-aligned ZnO NR arrays by thermal decomposition of acetone followed by spontaneous etching and evaporation of core-ZnO. By utilizing the decomposition of acetone as well as distinct degrees of interaction between intermediate products and ZnO, well-aligned nonporous ZnO/C core-shell NR, porous ZnO/C core-shell NR, and a-CNT arrays were separately prepared by varying the working temperature from 400 to 700 °C. Scanning electron microscopy and high-resolution transmission electron microscopy show that the thickness of carbon shells increases from 3 to 10 nm with the increase in working temperature. Raman spectra demonstrate slight sp(2) bonds of carbon, indicating small graphite regions embedded in amorphous carbon nanoshells. The E(2) peaks of ZnO reduce with the increase in substrate temperature. Photoresponse measurements of ZnO/C NR arrays shows enhancement of both photoresponsivity and response velocity, and the interference of humidity with regard to photosensing is effectively reduced by the capping of carbon nanoshells. The work not only provides an effective route to improve the photosensing of semiconductor nanomaterials for practical applications, but also sheds light on preparing various hollow carbon and porous ZnO/C core-shell nanostructures with distinct morphologies by employing the routes presented in the paper on diverse ZnO nanostructures for optoelectrochemical applications.
首次采用提出的沉积-刻蚀-蒸发(DEE)路线制备了排列整齐的无定形碳纳米管(a-CNT)和多孔 ZnO/C 核壳纳米棒(NR)阵列。通过在热分解丙酮后在排列整齐的 ZnO NR 阵列表面沉积碳,然后自发刻蚀和蒸发芯-ZnO,制备了这些阵列。通过利用丙酮的分解以及中间产物与 ZnO 之间不同程度的相互作用,可以通过改变工作温度从 400 至 700°C 分别制备排列整齐的无孔 ZnO/C 核壳 NR、多孔 ZnO/C 核壳 NR 和 a-CNT 阵列。扫描电子显微镜和高分辨率透射电子显微镜显示,随着工作温度的升高,碳壳的厚度从 3nm 增加到 10nm。拉曼光谱表明碳存在轻微的 sp(2)键,表明无定形碳纳米壳中嵌入了小的石墨区域。随着衬底温度的升高,ZnO 的 E(2)峰减小。ZnO/C NR 阵列的光响应测量表明,光响应性和响应速度都得到了提高,并且碳纳米壳的覆盖有效地减少了湿度对光传感的干扰。这项工作不仅为提高半导体纳米材料在实际应用中的光传感性能提供了一种有效途径,而且还为通过在不同 ZnO 纳米结构上采用本文提出的路线制备各种具有不同形貌的空心碳和多孔 ZnO/C 核壳纳米结构提供了思路,适用于光电化学应用。