Chamberland S, Malouin F, Rabin H R, Schollaardt T, Parr T R, Bryan L E
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana.
J Antimicrob Chemother. 1990 Jun;25(6):995-1010. doi: 10.1093/jac/25.6.995.
The mechanism of persistence was characterized in Pseudomonas aeruginosa isolates obtained ten days before (4405), on the tenth day of (4419), and four days after (4478) ciprofloxacin therapy in a cystic fibrosis patient. Isolate 4419 showed a 16-fold increase in resistance to ciprofloxacin, norfloxacin and nalidixic acid. The outer membrane of 4419 had no detectable protein F. A modified lipopolysaccharide profile, a longer lag phase before growth and a slower generation time were also noted for isolate 4419. Cell surface hydrophobicity was increased by 20% in 4419 whereas uptake of [14C]ciprofloxacin was equivalent in all three isolates. Ciprofloxacin doses causing 50% inhibition of DNA synthesis were proportional to MICs for each isolate indicating that the DNA gyrase of 4419 was resistant to quinolones. A quinolone-susceptible revertant of 4419 remained deficient in protein F. Protein F-deficiency was not associated with resistance to quinolones, nor to other antibiotics, supporting the view that it plays little role in outer membrane permeability to antibiotics.