Suppr超能文献

Caspase-3 介导的凝聚素 Cap-H 降解调节有丝分裂细胞死亡。

Caspase-3-mediated degradation of condensin Cap-H regulates mitotic cell death.

机构信息

Division of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore.

出版信息

Cell Death Differ. 2011 Jun;18(6):996-1004. doi: 10.1038/cdd.2010.165. Epub 2010 Dec 10.

Abstract

Mitotic death is a major form of cell death in cancer cells that have been treated with chemotherapeutic drugs. However, the mechanisms underlying this form of cell death is poorly understood. Here, we report that the loss of chromosome integrity is an important determinant of mitotic death. During prolonged mitotic arrest, caspase-3 is activated and it cleaves Cap-H, a subunit of condensin I. The depletion of Cap-H results in the loss of condensin I complex at the chromosomes, thus affecting the integrity of the chromosomes. Consequently, DNA fragmentation by caspase-activated DNase is facilitated, thus driving the cell towards mitotic death. By expressing a caspase-resistant form of Cap-H, mitotic death is abrogated and the cells are able to reenter interphase after a long mitotic delay. Taken together, we provide new insights into the molecular events that occur during mitotic death.

摘要

有丝分裂死亡是癌细胞在接受化疗药物治疗后主要的细胞死亡形式。然而,这种细胞死亡形式的机制尚不清楚。在这里,我们报告染色体完整性的丧失是有丝分裂死亡的一个重要决定因素。在长时间的有丝分裂阻滞期间,半胱天冬酶-3 被激活,它切割着丝粒蛋白 H(Cap-H),这是凝缩素 I 的一个亚基。Cap-H 的耗竭导致着丝粒蛋白 I 复合物在染色体上的丢失,从而影响染色体的完整性。因此,被半胱天冬酶激活的 DNA 内切酶促进了 DNA 片段化,从而使细胞向有丝分裂死亡方向发展。通过表达半胱天冬酶抗性形式的 Cap-H,可以阻断有丝分裂死亡,并且细胞能够在长时间的有丝分裂延迟后重新进入细胞间期。总之,我们为有丝分裂死亡过程中发生的分子事件提供了新的见解。

相似文献

1
Caspase-3-mediated degradation of condensin Cap-H regulates mitotic cell death.
Cell Death Differ. 2011 Jun;18(6):996-1004. doi: 10.1038/cdd.2010.165. Epub 2010 Dec 10.
3
Phosphorylation of CAP-G is required for its chromosomal DNA localization during mitosis.
Biochem Biophys Res Commun. 2008 Dec 19;377(3):1007-11. doi: 10.1016/j.bbrc.2008.10.114. Epub 2008 Oct 31.
5
Ki-67 and condensins support the integrity of mitotic chromosomes through distinct mechanisms.
J Cell Sci. 2018 Mar 22;131(6):jcs212092. doi: 10.1242/jcs.212092.
7
Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes.
J Cell Sci. 2007 Apr 1;120(Pt 7):1245-55. doi: 10.1242/jcs.03425. Epub 2007 Mar 13.
8
Disruption of a conserved CAP-D3 threonine alters condensin loading on mitotic chromosomes leading to chromosome hypercondensation.
J Biol Chem. 2015 Mar 6;290(10):6156-67. doi: 10.1074/jbc.M114.627109. Epub 2015 Jan 20.
9
PfCAP-H is essential for assembly of condensin I complex and karyokinesis during asexual proliferation of .
mBio. 2024 May 8;15(5):e0285023. doi: 10.1128/mbio.02850-23. Epub 2024 Apr 2.
10
Condensin II plays an essential role in reversible assembly of mitotic chromosomes in situ.
Mol Biol Cell. 2017 Oct 15;28(21):2875-2886. doi: 10.1091/mbc.E17-04-0252. Epub 2017 Aug 23.

引用本文的文献

1
NCAPH is a prognostic biomarker and associated with immune infiltrates in lung adenocarcinoma.
Sci Rep. 2022 Jun 10;12(1):9578. doi: 10.1038/s41598-022-12862-6.
4
Elevated mRNA Expression Levels of NCAPG are Associated with Poor Prognosis in Ovarian Cancer.
Cancer Manag Res. 2020 Jul 14;12:5773-5786. doi: 10.2147/CMAR.S253349. eCollection 2020.
5
Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold.
Chromosome Res. 2018 Dec;26(4):277-295. doi: 10.1007/s10577-018-9584-1. Epub 2018 Aug 24.
6
Cell death response to anti-mitotic drug treatment in cell culture, mouse tumor model and the clinic.
Endocr Relat Cancer. 2017 Sep;24(9):T83-T96. doi: 10.1530/ERC-17-0003. Epub 2017 Mar 1.
7
Interactome disassembly during apoptosis occurs independent of caspase cleavage.
Mol Syst Biol. 2017 Jan 12;13(1):906. doi: 10.15252/msb.20167067.
8
Exploring Mouse Protein Function via Multiple Approaches.
PLoS One. 2016 Nov 15;11(11):e0166580. doi: 10.1371/journal.pone.0166580. eCollection 2016.
10
Shaping mitotic chromosomes: From classical concepts to molecular mechanisms.
Bioessays. 2015 Jul;37(7):755-66. doi: 10.1002/bies.201500020. Epub 2015 May 18.

本文引用的文献

1
DNA damage signaling in response to double-strand breaks during mitosis.
J Cell Biol. 2010 Jul 26;190(2):197-207. doi: 10.1083/jcb.200911156.
2
An essential role for p73 in regulating mitotic cell death.
Cell Death Differ. 2010 May;17(5):787-800. doi: 10.1038/cdd.2009.181. Epub 2009 Dec 11.
3
Cell death pathways in response to antitumor therapy.
Tumori. 2009 Jul-Aug;95(4):409-21. doi: 10.1177/030089160909500401.
4
How do anti-mitotic drugs kill cancer cells?
J Cell Sci. 2009 Aug 1;122(Pt 15):2579-85. doi: 10.1242/jcs.039719.
5
Mitotic catastrophe is the predominant response to histone acetyltransferase depletion.
Cell Death Differ. 2009 Mar;16(3):483-97. doi: 10.1038/cdd.2008.182. Epub 2008 Dec 19.
6
MCF-7 breast carcinoma cells do not express caspase-3.
Breast Cancer Res Treat. 2009 Sep;117(1):219-21. doi: 10.1007/s10549-008-0217-9. Epub 2008 Oct 14.
8
Beyond genetics: surprising determinants of cell fate in antitumor drugs.
Cancer Cell. 2008 Aug 12;14(2):103-5. doi: 10.1016/j.ccr.2008.07.010.
9
Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs.
Cancer Cell. 2008 Aug 12;14(2):111-22. doi: 10.1016/j.ccr.2008.07.002. Epub 2008 Jul 24.
10
Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5.
Cancer Res. 2008 May 1;68(9):3269-76. doi: 10.1158/0008-5472.CAN-07-6699.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验