Suppr超能文献

细胞培养、小鼠肿瘤模型及临床中抗有丝分裂药物治疗后的细胞死亡反应。

Cell death response to anti-mitotic drug treatment in cell culture, mouse tumor model and the clinic.

作者信息

Shi Jue, Mitchison Timothy J

机构信息

Department of Physics and Department of BiologyCenter for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China

Department of Systems BiologyHarvard Medical School, Boston, Massachusetts, USA.

出版信息

Endocr Relat Cancer. 2017 Sep;24(9):T83-T96. doi: 10.1530/ERC-17-0003. Epub 2017 Mar 1.

Abstract

Anti-mitotic cancer drugs include classic microtubule-targeting drugs, such as taxanes and vinca alkaloids, and the newer spindle-targeting drugs, such as inhibitors of the motor protein; Kinesin-5 (aka KSP, Eg5, KIF11); and Aurora-A, Aurora-B and Polo-like kinases. Microtubule-targeting drugs are among the first line of chemotherapies for a wide spectrum of cancers, but patient responses vary greatly. We still lack understanding of how these drugs achieve a favorable therapeutic index, and why individual patient responses vary. Spindle-targeting drugs have so far shown disappointing results in the clinic, but it is possible that certain patients could benefit if we understand their mechanism of action better. Pre-clinical data from both cell culture and mouse tumor models showed that the cell death response is the most variable point of the drug action. Hence, in this review we focus on current mechanistic understanding of the cell death response to anti-mitotics. We first draw on extensive results from cell culture studies, and then cross-examine them with the more limited data from animal tumor models and the clinic. We end by discussing how cell type variation in cell death response might be harnessed to improve anti-mitotic chemotherapy by better patient stratification, new drug combinations and identification of novel targets for drug development.

摘要

抗有丝分裂抗癌药物包括经典的微管靶向药物,如紫杉烷类和长春花生物碱,以及较新的纺锤体靶向药物,如驱动蛋白5(又称KSP、Eg5、KIF11)抑制剂;以及极光激酶A、极光激酶B和波罗样激酶。微管靶向药物是多种癌症一线化疗药物之一,但患者反应差异很大。我们仍不清楚这些药物如何实现良好的治疗指数,以及为何个体患者反应不同。迄今为止,纺锤体靶向药物在临床上的结果令人失望,但如果我们能更好地理解其作用机制,某些患者有可能从中受益。来自细胞培养和小鼠肿瘤模型的临床前数据表明,细胞死亡反应是药物作用中最具变异性的点。因此,在本综述中,我们聚焦于目前对抗有丝分裂药物细胞死亡反应的机制理解。我们首先借鉴细胞培养研究的大量结果,然后用动物肿瘤模型和临床中更有限的数据对其进行交叉检验。最后,我们讨论如何利用细胞死亡反应中的细胞类型差异,通过更好的患者分层、新的药物组合以及确定药物研发的新靶点来改善抗有丝分裂化疗。

相似文献

1
Cell death response to anti-mitotic drug treatment in cell culture, mouse tumor model and the clinic.
Endocr Relat Cancer. 2017 Sep;24(9):T83-T96. doi: 10.1530/ERC-17-0003. Epub 2017 Mar 1.
2
Kinesin motor proteins as targets for cancer therapy.
Cancer Metastasis Rev. 2009 Jun;28(1-2):197-208. doi: 10.1007/s10555-009-9185-8.
3
Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5.
Cancer Res. 2008 May 1;68(9):3269-76. doi: 10.1158/0008-5472.CAN-07-6699.
4
Targeting mitosis for anti-cancer therapy.
BioDrugs. 2007;21(4):225-33. doi: 10.2165/00063030-200721040-00003.
5
How do anti-mitotic drugs kill cancer cells?
J Cell Sci. 2009 Aug 1;122(Pt 15):2579-85. doi: 10.1242/jcs.039719.
6
Mitotic drug targets and the development of novel anti-mitotic anticancer drugs.
Drug Resist Updat. 2007 Aug-Oct;10(4-5):162-81. doi: 10.1016/j.drup.2007.06.003. Epub 2007 Jul 31.
7
A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo.
Biochim Biophys Acta. 2015 Sep;1850(9):1676-84. doi: 10.1016/j.bbagen.2015.04.013. Epub 2015 May 7.
9
Development of new cancer therapeutic agents targeting mitosis.
Expert Opin Investig Drugs. 2006 Nov;15(11):1411-25. doi: 10.1517/13543784.15.11.1411.
10
Mitotic drug targets.
J Cell Biochem. 2010 Oct 1;111(2):258-65. doi: 10.1002/jcb.22721.

引用本文的文献

3
4
Positioning centrioles and centrosomes.
J Cell Biol. 2024 Apr 1;223(4). doi: 10.1083/jcb.202311140. Epub 2024 Mar 21.
5
Proteomic and metabolomic signatures of U87 glioblastoma cells treated with cisplatin and/or paclitaxel.
Ann Med. 2023;55(2):2305308. doi: 10.1080/07853890.2024.2305308. Epub 2024 Jan 22.
6
Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools.
J Genet Eng Biotechnol. 2023 Jul 19;21(1):78. doi: 10.1186/s43141-023-00531-8.
7
Bcl-xL activity influences outcome of the mitotic arrest.
Front Pharmacol. 2022 Sep 15;13:933112. doi: 10.3389/fphar.2022.933112. eCollection 2022.
8
Rationale for combination of paclitaxel and CDK4/6 inhibitor in ovarian cancer therapy - non-mitotic mechanisms of paclitaxel.
Front Oncol. 2022 Sep 15;12:907520. doi: 10.3389/fonc.2022.907520. eCollection 2022.
9
Cytoplasmic organization promotes protein diffusion in Xenopus extracts.
Nat Commun. 2022 Sep 23;13(1):5599. doi: 10.1038/s41467-022-33339-0.
10
In Vitro Evaluation of NLS-DTX Activity in Triple-Negative Breast Cancer.
Molecules. 2022 Aug 2;27(15):4920. doi: 10.3390/molecules27154920.

本文引用的文献

1
Mitotic MELK-eIF4B signaling controls protein synthesis and tumor cell survival.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9810-5. doi: 10.1073/pnas.1606862113. Epub 2016 Aug 15.
4
A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis.
J Cell Biol. 2016 Jul 18;214(2):143-53. doi: 10.1083/jcb.201604054.
7
The future of cancer treatment: immunomodulation, CARs and combination immunotherapy.
Nat Rev Clin Oncol. 2016 May;13(5):273-90. doi: 10.1038/nrclinonc.2016.25. Epub 2016 Mar 15.
8
Aurora Kinase Inhibitors: Current Status and Outlook.
Front Oncol. 2015 Dec 21;5:278. doi: 10.3389/fonc.2015.00278. eCollection 2015.
9
MYC Is a Major Determinant of Mitotic Cell Fate.
Cancer Cell. 2015 Jul 13;28(1):129-40. doi: 10.1016/j.ccell.2015.06.001.
10
Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy.
Cell. 2015 Feb 26;160(5):977-989. doi: 10.1016/j.cell.2015.01.042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验