Suppr超能文献

用稀硫酸提取和纯化接合菌壳聚糖时的温度变化

Temperature shifts for extraction and purification of zygomycetes chitosan with dilute sulfuric acid.

作者信息

Zamani Akram, Edebo Lars, Niklasson Claes, Taherzadeh Mohammad J

机构信息

School of Engineering, University of Borås, 50190 Borås, Sweden; E-Mail:

出版信息

Int J Mol Sci. 2010 Aug 13;11(8):2976-87. doi: 10.3390/ijms11082976.

Abstract

The temperature-dependent hydrolysis and solubility of chitosan in sulfuric acid solutions offer the possibility for chitosan extraction from zygomycetes mycelia and separation from other cellular ingredients with high purity and high recovery. In this study, Rhizomucor pusillus biomass was initially extracted with 0.5 M NaOH at 120 °C for 20 min, leaving an alkali insoluble material (AIM) rich in chitosan. Then, the AIM was subjected to two steps treatment with 72 mM sulfuric acid at (i) room temperature for 10 min followed by (ii) 120 °C for 45 min. During the first step, phosphate of the AIM was released into the acid solution and separated from the chitosan-rich residue by centrifugation. In the second step, the residual AIM was re-suspended in fresh 72 mM sulfuric acid, heated at 120 °C and hot filtered, whereby chitosan was extracted and separated from the hot alkali and acid insoluble material (HAAIM). The chitosan was recovered from the acid solution by precipitation at lowered temperature and raised pH to 8-10. The treatment resulted in 0.34 g chitosan and 0.16 g HAAIM from each gram AIM. At the start, the AIM contained at least 17% phosphate, whereas after the purification, the corresponding phosphate content of the obtained chitosan was just 1%. The purity of this chitosan was higher than 83%. The AIM subjected directly to the treatment with hot sulfuric acid (at 120 °C for 45 min) resulted in a chitosan with a phosphate impurity of 18.5%.

摘要

壳聚糖在硫酸溶液中的水解和溶解度随温度变化,这为从接合菌菌丝体中提取壳聚糖并与其他细胞成分分离提供了可能,且能实现高纯度和高回收率。在本研究中,最初用0.5 M NaOH在120 °C下提取微小根毛霉生物质20分钟,得到富含壳聚糖的碱不溶性物质(AIM)。然后,将AIM用72 mM硫酸进行两步处理:(i)在室温下处理10分钟,接着(ii)在120 °C下处理45分钟。在第一步中,AIM中的磷酸盐释放到酸溶液中,通过离心从富含壳聚糖的残渣中分离出来。在第二步中,将残留的AIM重新悬浮在新鲜的72 mM硫酸中,在120 °C下加热并趁热过滤,从而从热碱和酸不溶性物质(HAAIM)中提取并分离出壳聚糖。通过在低温下沉淀并将pH值提高到8 - 10从酸溶液中回收壳聚糖。该处理每克AIM得到了0.34克壳聚糖和0.16克HAAIM。一开始,AIM中至少含有17%的磷酸盐,而纯化后,所得壳聚糖相应的磷酸盐含量仅为1%。这种壳聚糖的纯度高于83%。直接用热硫酸处理(在120 °C下处理45分钟)的AIM得到的壳聚糖磷酸盐杂质含量为18.5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd85/2996746/34b84fcfa7a5/ijms-11-02976f1.jpg

相似文献

1
Temperature shifts for extraction and purification of zygomycetes chitosan with dilute sulfuric acid.
Int J Mol Sci. 2010 Aug 13;11(8):2976-87. doi: 10.3390/ijms11082976.
2
Extraction and precipitation of chitosan from cell wall of zygomycetes fungi by dilute sulfuric acid.
Biomacromolecules. 2007 Dec;8(12):3786-90. doi: 10.1021/bm700701w. Epub 2007 Nov 27.
3
A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.
Int J Biol Macromol. 2014 Feb;63:158-62. doi: 10.1016/j.ijbiomac.2013.10.042. Epub 2013 Nov 5.
4
Determination of glucosamine and N-acetyl glucosamine in fungal cell walls.
J Agric Food Chem. 2008 Sep 24;56(18):8314-8. doi: 10.1021/jf801478j. Epub 2008 Aug 27.
5
Synthesis and properties of a novel biosuperabsorbent from alkali soluble Rhizomucor pusillus proteins.
Appl Microbiol Biotechnol. 2011 Dec;92(6):1171-7. doi: 10.1007/s00253-011-3395-z. Epub 2011 Jun 23.
8
Levulinic acid production by two-step acid-catalyzed treatment of Quercus mongolica using dilute sulfuric acid.
Bioresour Technol. 2017 Feb;225:183-190. doi: 10.1016/j.biortech.2016.11.063. Epub 2016 Nov 16.
9
Heat-induced transfer of protons from chitosan to glycerol phosphate produces chitosan precipitation and gelation.
Biomacromolecules. 2008 Feb;9(2):640-50. doi: 10.1021/bm700745d. Epub 2008 Jan 11.
10
Decomposition of myceliar matrix and extraction of chitosan from Gongronella butleri USDB 0201 and Absidia coerulea ATCC 14076.
Int J Biol Macromol. 2008 Jul 1;43(1):2-7. doi: 10.1016/j.ijbiomac.2007.09.018. Epub 2007 Oct 2.

引用本文的文献

2
Mucoralean fungi for sustainable production of bioethanol and biologically active molecules.
Appl Microbiol Biotechnol. 2018 Feb;102(3):1097-1117. doi: 10.1007/s00253-017-8691-9. Epub 2017 Dec 15.
4
Mycelial Mattress from a Sporangia Formation-Delayed Mutant of Rhizopus stolonifer as Wound Healing-Enhancing Biomaterial.
PLoS One. 2015 Aug 14;10(8):e0134090. doi: 10.1371/journal.pone.0134090. eCollection 2015.
5
Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.
Int J Mol Sci. 2015 Jul 22;16(7):16683-94. doi: 10.3390/ijms160716683.

本文引用的文献

1
Determination of glucosamine and N-acetyl glucosamine in fungal cell walls.
J Agric Food Chem. 2008 Sep 24;56(18):8314-8. doi: 10.1021/jf801478j. Epub 2008 Aug 27.
2
Extraction and precipitation of chitosan from cell wall of zygomycetes fungi by dilute sulfuric acid.
Biomacromolecules. 2007 Dec;8(12):3786-90. doi: 10.1021/bm700701w. Epub 2007 Nov 27.
3
Effect of organic and inorganic acids on concentrated chitosan solutions and gels.
Int J Biol Macromol. 2005 Nov 15;37(3):134-42. doi: 10.1016/j.ijbiomac.2005.09.009. Epub 2005 Oct 27.
4
Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii.
Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2564-8. doi: 10.1073/pnas.90.7.2564.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验