Suppr超能文献

在张力下膜双层中脂质和 DiI 动力学的原子级模拟。

Atomistic simulation of lipid and DiI dynamics in membrane bilayers under tension.

机构信息

Department of Bioengineering, The Pennsylvania State University, 230 Hallowell Building, University Park, PA, USA.

出版信息

Phys Chem Chem Phys. 2011 Jan 28;13(4):1368-78. doi: 10.1039/c0cp00430h. Epub 2010 Dec 9.

Abstract

Membrane tension modulates cellular processes by initiating changes in the dynamics of its molecular constituents. To quantify the precise relationship between tension, structural properties of the membrane, and the dynamics of lipids and a lipophilic reporter dye, we performed atomistic molecular dynamics (MD) simulations of DiI-labeled dipalmitoylphosphatidylcholine (DPPC) lipid bilayers under physiological lateral tensions ranging from -2.6 mN m(-1) to 15.9 mN m(-1). Simulations showed that the bilayer thickness decreased linearly with tension consistent with volume-incompressibility, and this thinning was facilitated by a significant increase in acyl chain interdigitation at the bilayer midplane and spreading of the acyl chains. Tension caused a significant drop in the bilayer's peak electrostatic potential, which correlated with the strong reordering of water and lipid dipoles. For the low tension regime, the DPPC lateral diffusion coefficient increased with increasing tension in accordance with free-area theory. For larger tensions, free area theory broke down due to tension-induced changes in molecular shape and friction. Simulated DiI rotational and lateral diffusion coefficients were lower than those of DPPC but increased with tension in a manner similar to DPPC. Direct correlation of membrane order and viscosity near the DiI chromophore, which was just under the DPPC headgroup, indicated that measured DiI fluorescence lifetime, which is reported to decrease with decreasing lipid order, is likely to be a good reporter of tension-induced decreases in lipid headgroup viscosity. Together, these results offer new molecular-level insights into membrane tension-related mechanotransduction and into the utility of DiI in characterizing tension-induced changes in lipid packing.

摘要

膜张力通过引发其分子成分动力学的变化来调节细胞过程。为了定量研究张力、膜的结构特性以及脂质和脂溶性示踪染料的动力学之间的确切关系,我们在生理侧向张力范围内从-2.6 mN m(-1)到 15.9 mN m(-1)进行了 DiI 标记的二棕榈酰基磷脂酰胆碱 (DPPC) 脂质双层的原子分子动力学 (MD) 模拟。模拟表明,双层厚度随张力线性减小,与体积不可压缩性一致,这种变薄是通过双层中间层酰基链互穿插的显著增加和酰基链的展开来促进的。张力导致双层的峰值静电势显著下降,这与水和脂质偶极子的强烈重排相关。对于低张力范围,DPPC 侧向扩散系数随张力的增加而增加,符合自由面积理论。对于较大的张力,由于分子形状和摩擦力的变化,自由面积理论失效。模拟的 DiI 旋转和侧向扩散系数低于 DPPC,但以与 DPPC 相似的方式随张力增加而增加。在 DiI 发色团附近的膜有序性和粘度的直接相关性,它刚好在 DPPC 头部基团下面,表明测量的 DiI 荧光寿命(据报道,荧光寿命随脂质有序性的降低而降低)很可能是脂质头部基团粘度随张力降低的良好示踪剂。总之,这些结果为膜张力相关的机械转导提供了新的分子水平的见解,并为 DiI 在表征脂质堆积引起的张力变化中的应用提供了新的见解。

相似文献

引用本文的文献

2
Neutron spin echo shows pHLIP is capable of retarding membrane thickness fluctuations.中子自旋回波实验表明 pHLIP 能够减缓膜厚度波动。
Biochim Biophys Acta Biomembr. 2024 Oct;1866(7):184349. doi: 10.1016/j.bbamem.2024.184349. Epub 2024 May 28.
8
Distribution of mechanical stress in the Escherichia coli cell envelope.大肠杆菌细胞包膜中机械应力的分布。
Biochim Biophys Acta Biomembr. 2018 Dec;1860(12):2566-2575. doi: 10.1016/j.bbamem.2018.09.020. Epub 2018 Sep 29.
10
Osmosensing by the bacterial PhoQ/PhoP two-component system.细菌 PhoQ/PhoP 双组分系统的渗透压感应。
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10792-E10798. doi: 10.1073/pnas.1717272114. Epub 2017 Nov 28.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验