Gullapalli Ramachandra R, Demirel Melik C, Butler Peter J
Department of Bioengineering, The Pennsylvania State University, 228 Hallowell Building, University Park, PA 16802, USA.
Phys Chem Chem Phys. 2008 Jun 28;10(24):3548-60. doi: 10.1039/b716979e. Epub 2008 May 7.
We performed a 40 ns simulation of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-C18(3)) in a 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl choline (DPPC) bilayer in order to facilitate interpretation of lipid dynamics and membrane structure from fluorescence lifetime, anisotropy, and fluorescence correlations spectroscopy (FCS). Incorporation of DiI of 1.6 to 3.2 mol% induced negligible changes in area per lipid but detectable increases in bilayer thickness, each of which are indicators of membrane structural perturbation. The DiI chromophore angle was 77 +/- 17 degrees with respect to the bilayer normal, consistent with rotational diffusion inferred from polarization studies. The DiI headgroup was located 0.63 nm below the lipid head group-water interface, a novel result in contrast to some popular cartoon representations of DiI but consistent with DiI's increase in quantum yield when incorporated into lipid bilayers. Importantly, the fast component of rotational anisotropy matched published experimental results demonstrating that sufficient free volume exists at the sub-interfacial region to support fast rotations. Simulations with non-charged DiI head groups exhibited DiI flip-flop, demonstrating that the positively-charged chromophore stabilizes the orientation and location of DiI in a single monolayer. DiI induced detectable changes in interfacial properties of water ordering, electrostatic potential, and changes in P-N vector orientation of DPPC lipids. The diffusion coefficient of DiI (9.7 +/- 0.02 x 10(-8) cm2 s(-1)) was similar to the diffusion of DPPC molecules (10.7 +/- 0.04 x 10(-8) cm2 s(-1)), supporting the conclusion that DiI dynamics reflect lipid dynamics. These results provide the first atomistic level insight into DiI dynamics, results essential in elucidating lipid dynamics through single molecule fluorescence studies.
我们对1,1'-二辛基-3,3,3',3'-四甲基吲哚菁高氯酸盐(DiI-C18(3))在1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPC)双层膜中进行了40纳秒的模拟,以便从荧光寿命、各向异性和荧光相关光谱(FCS)来促进对脂质动力学和膜结构的解释。掺入1.6至3.2 mol%的DiI会引起每脂质面积的可忽略不计的变化,但会导致双层膜厚度有可检测到的增加,这两者都是膜结构扰动的指标。DiI发色团相对于双层膜法线的角度为77±17度,这与从极化研究推断出的旋转扩散一致。DiI头基位于脂质头基-水界面下方0.63纳米处,这一新颖结果与一些流行的DiI卡通表示不同,但与DiI掺入脂质双层膜时量子产率的增加一致。重要的是,旋转各向异性的快速成分与已发表的实验结果相符,表明在亚界面区域存在足够的自由体积以支持快速旋转。用不带电荷的DiI头基进行的模拟显示出DiI的翻转,表明带正电荷的发色团稳定了DiI在单个单层中的取向和位置。DiI引起了水有序化、静电势的界面性质以及DPPC脂质的P-N矢量取向变化的可检测变化。DiI的扩散系数(9.7±0.02×10−8平方厘米每秒)与DPPC分子的扩散系数(10.7±0.04×10−8平方厘米每秒)相似,支持了DiI动力学反映脂质动力学的结论。这些结果首次在原子水平上深入了解了DiI动力学,这些结果对于通过单分子荧光研究阐明脂质动力学至关重要。