Oak Ridge National Laboratory, P.O. Box 2008, MS6367, Oak Ridge, Tennessee 37831-6367, USA.
Nanoscale. 2011 Mar;3(3):1008-13. doi: 10.1039/c0nr00519c. Epub 2010 Dec 9.
A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.
我们采用第一性原理方法证明,在碳纳米管中,替位磷原子强烈地改变了表面的化学性质,从而在具有特定受体分子亲和力的位置上产生了高度局域化的位点。对于受体分子,管内的磷-氮共掺杂也有类似的效果,但 P-N 键也可以接受电荷,从而对供体分子具有亲和力。这种分子选择性在 PN 掺杂的纳米管上吸附的 CO 和 NH3、P 掺杂的纳米管上吸附的 O2 以及 P 和 PN 掺杂的纳米管上吸附的 NO2 和 SO2 中得到了说明。不同化学物质吸附到掺杂纳米管上会改变掺杂诱导的局域态,从而改变电子电导。虽然 SO2 和 CO 的吸附仅引起电子电导的微小变化,但 NH3、NO2 和 O2 的吸附会抑制电导的下降。相反,PN 掺杂纳米管上吸附 NO2 伴随着电导的额外下降,这与现有的电导下降有关。总的来说,这些电导率的变化为选择性检测特定分子的存在提供了一种有效的方法。此外,P 掺杂纳米管的高氧化电位使其成为氢燃料电池中电极材料的良好候选材料。