Suppr超能文献

用于细胞和小鼠生物发光成像的荧光素酶蛋白互补分析

Luciferase protein complementation assays for bioluminescence imaging of cells and mice.

作者信息

Luker Gary D, Luker Kathryn E

机构信息

Department of Radiology, University of Michigan, Ann Arbor, MI 48109-2200, USA.

出版信息

Methods Mol Biol. 2011;680:29-43. doi: 10.1007/978-1-60761-901-7_2.

Abstract

Protein fragment complementation assays (PCAs) with luciferase reporters currently are the preferred method for detecting and quantifying protein-protein interactions in living animals. At the most basic level, PCAs involve fusion of two proteins of interest to enzymatically inactive fragments of luciferase. Upon association of the proteins of interest, the luciferase fragments are capable of reconstituting enzymatic activity to generate luminescence in vivo. In addition to bi-molecular luciferase PCAs, unimolecular biosensors for hormones, kinases, and proteases also have been developed using target peptides inserted between inactive luciferase fragments. Luciferase PCAs offer unprecedented opportunities to quantify dynamics of protein-protein interactions in intact cells and living animals, but successful use of luciferase PCAs in cells and mice involves careful consideration of many technical factors. This chapter discusses the design of luciferase PCAs appropriate for animal imaging, including construction of reporters, incorporation of reporters into cells and mice, imaging techniques, and data analysis.

摘要

目前,使用荧光素酶报告基因的蛋白质片段互补分析(PCA)是检测和定量活体动物中蛋白质-蛋白质相互作用的首选方法。在最基本的层面上,PCA涉及将两种感兴趣的蛋白质与荧光素酶的无酶活性片段融合。当感兴趣的蛋白质结合时,荧光素酶片段能够重新构建酶活性,从而在体内产生发光。除了双分子荧光素酶PCA外,还利用插入无活性荧光素酶片段之间的靶肽开发了用于激素、激酶和蛋白酶的单分子生物传感器。荧光素酶PCA为定量完整细胞和活体动物中蛋白质-蛋白质相互作用的动力学提供了前所未有的机会,但要在细胞和小鼠中成功使用荧光素酶PCA,需要仔细考虑许多技术因素。本章讨论适用于动物成像的荧光素酶PCA的设计,包括报告基因的构建、将报告基因导入细胞和小鼠、成像技术以及数据分析。

相似文献

1
Luciferase protein complementation assays for bioluminescence imaging of cells and mice.
Methods Mol Biol. 2011;680:29-43. doi: 10.1007/978-1-60761-901-7_2.
2
A highly sensitive protein-protein interaction assay based on Gaussia luciferase.
Nat Methods. 2006 Dec;3(12):977-9. doi: 10.1038/nmeth979. Epub 2006 Nov 12.
3
Building customizable auto-luminescent luciferase-based reporters in plants.
Elife. 2020 Mar 25;9:e52786. doi: 10.7554/eLife.52786.
6
Split luciferase complementation for analysis of intracellular signaling.
Anal Sci. 2014;30(5):539-44. doi: 10.2116/analsci.30.539.
7
Engineered luciferases for molecular sensing in living cells.
Curr Opin Biotechnol. 2009 Feb;20(1):14-8. doi: 10.1016/j.copbio.2009.02.013. Epub 2009 Mar 18.
8
Monitoring Notch activation in cultured mammalian cells: luciferase complementation imaging assays.
Methods Mol Biol. 2014;1187:155-68. doi: 10.1007/978-1-4939-1139-4_12.
9
Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors.
Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):129-150. doi: 10.1146/annurev-anchem-061318-115027. Epub 2019 Feb 20.
10
Current state of imaging protein-protein interactions in vivo with genetically encoded reporters.
Annu Rev Biomed Eng. 2007;9:321-49. doi: 10.1146/annurev.bioeng.9.060906.152044.

引用本文的文献

1
Spatiotemporal dissection of tumor microenvironment via in situ sensing and monitoring in tumor-on-a-chip.
Biosens Bioelectron. 2023 Apr 1;225:115064. doi: 10.1016/j.bios.2023.115064. Epub 2023 Jan 5.
2
Experimental Approaches to Identify Host Factors Important for Influenza Virus.
Cold Spring Harb Perspect Med. 2020 Dec 1;10(12):a038521. doi: 10.1101/cshperspect.a038521.
4
Monitoring ligand-dependent assembly of receptor ternary complexes in live cells by BRETFect.
Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):E2653-E2662. doi: 10.1073/pnas.1716224115. Epub 2018 Feb 27.
6
Dual-Color Luciferase Complementation for Chemokine Receptor Signaling.
Methods Enzymol. 2016;570:119-29. doi: 10.1016/bs.mie.2015.08.024. Epub 2015 Nov 14.
7
C3-Luc Cells Are an Excellent Model for Evaluation of Cellular Immunity following HPV16L1 Vaccination.
PLoS One. 2016 Feb 22;11(2):e0149748. doi: 10.1371/journal.pone.0149748. eCollection 2016.
8
Split Gaussia luciferase for imaging ligand-receptor binding.
Methods Mol Biol. 2014;1098:59-69. doi: 10.1007/978-1-62703-718-1_5.
9
Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy.
J Control Release. 2012 Dec 10;164(2):192-204. doi: 10.1016/j.jconrel.2012.04.045. Epub 2012 May 18.
10
Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration.
PLoS One. 2012;7(4):e33577. doi: 10.1371/journal.pone.0033577. Epub 2012 Apr 4.

本文引用的文献

1
Imaging CXCR4 signaling with firefly luciferase complementation.
Anal Chem. 2008 Jul 15;80(14):5565-73. doi: 10.1021/ac8005457. Epub 2008 Jun 6.
2
Noninvasive imaging of apoptosis and its application in cancer therapeutics.
Clin Cancer Res. 2008 Apr 15;14(8):2492-501. doi: 10.1158/1078-0432.CCR-07-0782.
3
4
Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo.
Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16916-21. doi: 10.1073/pnas.0704257104. Epub 2007 Oct 17.
5
Molecular imaging of Akt kinase activity.
Nat Med. 2007 Sep;13(9):1114-9. doi: 10.1038/nm1608. Epub 2007 Aug 12.
9
A highly sensitive protein-protein interaction assay based on Gaussia luciferase.
Nat Methods. 2006 Dec;3(12):977-9. doi: 10.1038/nmeth979. Epub 2006 Nov 12.
10
An intramolecular folding sensor for imaging estrogen receptor-ligand interactions.
Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15883-8. doi: 10.1073/pnas.0607385103. Epub 2006 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验