Suppr超能文献

在步态站立阶段,内侧副韧带的体内长度模式。

In vivo length patterns of the medial collateral ligament during the stance phase of gait.

机构信息

Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.

出版信息

Knee Surg Sports Traumatol Arthrosc. 2011 May;19(5):719-27. doi: 10.1007/s00167-010-1336-5. Epub 2010 Dec 11.

Abstract

PURPOSE

The function of the medial collateral ligament (MCL) during gait has not been investigated. Our objective was to measure the kinematics of the medial collateral ligament during the stance phase of gait on a treadmill using a combined dual fluoroscopic imaging system (DFIS) and MRI technique.

METHODS

Three-dimensional models of the knee were constructed using magnetic resonance images of 7 healthy human knees. The contours of insertion areas of the superficial MCL (sMCL) and deep MCL (dMCL) on the femur and tibia were constructed using the coronal plane MR images of each knee. Both the sMCL and the dMCL were separated into 3 portions: the anterior, mid, and posterior bundles. The relative elongation of the bundles was calculated using the bundle length at heel strike (or 0% of the stance phase) as a reference.

RESULTS

The lengths of the anterior bundles were positively correlated with the knee flexion angle. The mid-bundles of the sMCL and dMCL were found to function similarly in trend with the anterior bundles during the stance phase of the gait and their lengths had weak correlations with the knee flexion angles. The elongations of the posterior bundles of sMCL and dMCL were peaked at mid-stance and terminal extension/pre-swing stance phase. The lengths of the posterior bundles were negatively correlated with the knee flexion during the stance phase.

CONCLUSION

The data of this study demonstrated that the anterior and posterior bundles of the sMCL and dMCL have a reciprocal function during the stance phase of gait. This data provide insight into the function of the MCL and a normal reference for the study of physiology and pathology of the MCL. The data may be useful in designing reconstruction techniques to better reproduce the native biomechanical behavior of the MCL.

LEVEL OF EVIDENCE

IV.

摘要

目的

内侧副韧带(MCL)在步态中的功能尚未得到研究。我们的目的是使用组合式双荧光透视成像系统(DFIS)和 MRI 技术在跑步机上测量步态支撑相期间 MCL 的运动学。

方法

使用 7 个健康人膝关节的磁共振图像构建膝关节的三维模型。使用每个膝关节的冠状面 MR 图像构建 MCL 浅层(sMCL)和深层(dMCL)在股骨和胫骨上的插入区域轮廓。将 sMCL 和 dMCL 均分为 3 部分:前束、中束和后束。使用跟骨触地(或支撑相的 0%)时的束长作为参考来计算束的相对伸长率。

结果

前束的长度与膝关节的屈曲角度呈正相关。在步态支撑相中,sMCL 和 dMCL 的中束与前束的运动趋势相似,其长度与膝关节屈曲角度具有较弱的相关性。sMCL 和 dMCL 的后束的伸长率在中间站立和末端伸展/预摆动站立阶段达到峰值。后束的长度与支撑相期间的膝关节屈曲呈负相关。

结论

本研究的数据表明,sMCL 和 dMCL 的前束和后束在步态支撑相中具有相互作用的功能。这些数据提供了对 MCL 功能的深入了解,为 MCL 的生理学和病理学研究提供了正常参考。这些数据可能有助于设计重建技术,以更好地再现 MCL 的固有生物力学行为。

证据水平

IV。

相似文献

1
In vivo length patterns of the medial collateral ligament during the stance phase of gait.
Knee Surg Sports Traumatol Arthrosc. 2011 May;19(5):719-27. doi: 10.1007/s00167-010-1336-5. Epub 2010 Dec 11.
5
In vivo length change patterns of the medial and lateral collateral ligaments along the flexion path of the knee.
Knee Surg Sports Traumatol Arthrosc. 2015 Oct;23(10):3055-61. doi: 10.1007/s00167-014-3306-9. Epub 2014 Sep 20.
7
A Comparative Biomechanical Study of Alternative Medial Collateral Ligament Reconstruction Techniques.
Am J Sports Med. 2024 May;52(6):1505-1513. doi: 10.1177/03635465241235858. Epub 2024 Mar 29.
9
Length-change patterns of the medial collateral ligament and posterior oblique ligament in relation to their function and surgery.
Knee Surg Sports Traumatol Arthrosc. 2020 Dec;28(12):3720-3732. doi: 10.1007/s00167-020-06050-0. Epub 2020 Jun 1.
10
Medial Collateral Ligament Reconstruction for Anteromedial Instability of the Knee: A Biomechanical Study In Vitro.
Am J Sports Med. 2022 Jun;50(7):1823-1831. doi: 10.1177/03635465221092118. Epub 2022 May 5.

引用本文的文献

2
Personalized alignment™ for total knee arthroplasty using the ROSA Knee and Persona knee systems: Surgical technique.
Front Surg. 2023 Jan 10;9:1098504. doi: 10.3389/fsurg.2022.1098504. eCollection 2022.
4
Opposite Effect of Cyclic Loading on the Material Properties of Medial Collateral Ligament at Different Temperatures: An Animal Study.
Front Bioeng Biotechnol. 2022 Jun 14;10:925033. doi: 10.3389/fbioe.2022.925033. eCollection 2022.
6
Medial collateral ligament reconstruction graft isometry is effected by femoral position more than tibial position.
Knee Surg Sports Traumatol Arthrosc. 2021 Nov;29(11):3800-3808. doi: 10.1007/s00167-020-06420-8. Epub 2021 Jan 17.
7
[Prevention and treatment of iatrogenic medial collateral ligament injuries in total knee arthroplasty].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2021 Jan 15;35(1):14-19. doi: 10.7507/1002-1892.202004126.
8
Techniques for In Vivo Measurement of Ligament and Tendon Strain: A Review.
Ann Biomed Eng. 2021 Jan;49(1):7-28. doi: 10.1007/s10439-020-02635-5. Epub 2020 Oct 6.
9
In vivo length change of ligaments of normal knees during dynamic high flexion.
BMC Musculoskelet Disord. 2020 Aug 15;21(1):552. doi: 10.1186/s12891-020-03560-3.
10
Elongation Patterns of the Posterior Cruciate Ligament after Total Knee Arthroplasty.
J Clin Med. 2020 Jul 2;9(7):2078. doi: 10.3390/jcm9072078.

本文引用的文献

1
In vivo tibiofemoral cartilage deformation during the stance phase of gait.
J Biomech. 2010 Mar 3;43(4):658-65. doi: 10.1016/j.jbiomech.2009.10.028. Epub 2009 Nov 5.
2
Medial knee injury: Part 1, static function of the individual components of the main medial knee structures.
Am J Sports Med. 2009 Sep;37(9):1762-70. doi: 10.1177/0363546509333852. Epub 2009 Jul 16.
3
Medial knee injury: Part 2, load sharing between the posterior oblique ligament and superficial medial collateral ligament.
Am J Sports Med. 2009 Sep;37(9):1771-6. doi: 10.1177/0363546509335191. Epub 2009 Jul 16.
5
Soft tissue balancing in varus total knee arthroplasty: an algorithmic approach.
Knee Surg Sports Traumatol Arthrosc. 2009 Jun;17(6):660-6. doi: 10.1007/s00167-009-0755-7. Epub 2009 Mar 17.
7
Biomechanical comparison of medial collateral ligament reconstructions using computer-assisted navigation.
Am J Sports Med. 2009 Jun;37(6):1123-30. doi: 10.1177/0363546508331134. Epub 2009 Mar 11.
9
Some anatomical details of the knee joint.
J Bone Joint Surg Br. 1948 Nov;30B(4):683-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验