Biomechanics Group, Mechanical Engineering Department, Imperial College London, London, UK.
Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan.
Am J Sports Med. 2022 Jun;50(7):1832-1842. doi: 10.1177/03635465221090612. Epub 2022 May 3.
There are many descriptions of medial collateral ligament (MCL) reconstruction, but they may not reproduce the anatomic structures and there is little evidence of their biomechanical performance.
To investigate the ability of "anatomic" MCL reconstruction to restore native stability after grade III MCL plus posteromedial capsule/posterior oblique ligament injuries in vitro.
Controlled laboratory study.
Twelve cadaveric knees were mounted in a kinematic testing rig to impose tibial displacing loads while the knee was flexed-extended: 88-N anteroposterior translation, 5-N·m internal-external rotation, 8-N·m valgus-varus, and combined anterior translation plus external rotation (anteromedial rotatory instability). Joint motion was measured via optical trackers with the knee intact; after superficial MCL (sMCL), deep MCL (dMCL), and posterior oblique ligament transection; and then after MCL double- and triple-strand reconstructions. Double strands reproduced the sMCL and posterior oblique ligament and triple-strands the sMCL, dMCL, and posterior oblique ligament. The sMCL was placed 5 mm posterior to the epicondyle in the double-strand technique and at the epicondyle in the triple-strand technique. Kinematic changes were examined by repeated measures 2-way analysis of variance with posttesting.
Transection of the sMCL, dMCL, and posterior oblique ligament increased valgus rotation (5° mean) and external rotation (9° mean). The double-strand reconstruction controlled valgus in extension but allowed 5° excess valgus in flexion and did not restore external rotation (7° excess). The triple-strand reconstruction restored both external rotation and valgus throughout flexion.
In a cadaveric model, a triple-strand reconstruction including a dMCL graft restored native external rotation, while a double-strand reconstruction without a dMCL graft did not. A reconstruction with the sMCL graft placed isometrically on the medial epicondyle restored valgus rotation across the arc of knee flexion, whereas a reconstruction with a more posteriorly placed sMCL graft slackened with knee flexion.
An MCL injury may rupture the anteromedial capsule and dMCL, causing anteromedial rotatory instability. Persistent MCL instability increases the likelihood of ACL graft failure after combined injury. A reconstruction with an anteromedial dMCL graft restored native external rotation, which may help to unload/protect an ACL graft. It is important to locate the sMCL graft isometrically at the femoral epicondyle to restore valgus across flexion.
有许多关于内侧副韧带(MCL)重建的描述,但它们可能无法重现解剖结构,并且其生物力学性能的证据也很少。
研究“解剖”MCL 重建在体外 III 级 MCL 加后内侧囊/后斜韧带损伤后恢复固有稳定性的能力。
对照实验室研究。
将 12 个尸体膝关节安装在运动学测试装置中,在膝关节屈伸时施加胫骨移位载荷:88-N 前后平移、5-N·m 内外旋转、8-N·m 外翻内翻和前向平移加外旋(前内侧旋转不稳定)。通过带有膝关节完整的光学跟踪器测量关节运动;在浅层 MCL(sMCL)、深层 MCL(dMCL)和后斜韧带切断后;然后进行 MCL 双股和三股重建。双股重建复制了 sMCL 和后斜韧带,三股重建复制了 sMCL、dMCL 和后斜韧带。sMCL 在双股技术中位于髁后 5mm,在三股技术中位于髁上。通过重复测量 2 因素方差分析检查运动学变化,并进行事后测试。
sMCL、dMCL 和后斜韧带的切断增加了外翻旋转(平均 5°)和外旋(平均 9°)。双股重建在伸展时控制了外翻,但在屈曲时允许 5°的过度外翻,并且没有恢复外旋(过度 7°)。三股重建在整个屈曲过程中恢复了外旋和外翻。
在尸体模型中,包括 dMCL 移植物的三股重建恢复了原有外旋,而不包括 dMCL 移植物的双股重建则没有。将 sMCL 移植物等距放置在内侧髁上的重建恢复了整个膝关节屈曲弧的外翻旋转,而将 sMCL 移植物更向后放置的重建在膝关节屈曲时会松弛。
MCL 损伤可能会撕裂前内侧囊和 dMCL,导致前内侧旋转不稳定。持续的 MCL 不稳定增加了联合损伤后 ACL 移植物失败的可能性。带有前内侧 dMCL 移植物的重建恢复了原有外旋,这可能有助于减轻/保护 ACL 移植物的负荷。将 sMCL 移植物等距定位在股骨髁上以恢复整个屈曲范围的外翻非常重要。