Department of Anesthesiology, University Medical Centre, Hugstetterstrasse 55, D-79106 Freiburg im Breisgau, Germany.
Anesth Analg. 2011 Feb;112(2):282-91. doi: 10.1213/ANE.0b013e318203f591. Epub 2010 Dec 14.
Administration of inhaled carbon monoxide before organ ischemic injury exerts protective effects in animal models. Because there are no data showing that this also works after an ischemic insult, our objective in this study was to investigate whether inhaled carbon monoxide attenuates cardiopulmonary bypass (CPB)-induced lung injury in a pig model.
Animals were randomized to a SHAM group (n = 5), a SHAM group plus inhaled carbon monoxide (n = 5), standard CPB (n = 10), and to CPB plus inhaled carbon monoxide (n = 10). Carbon monoxide (250 ppm) was given for 1 hour after termination of CPB. Lung biopsies were obtained before CPB, immediately after separation from CPB, and for 5 hours after termination of CPB to determine expression of pulmonary heat shock proteins 70 and 90, cytokines, alveolar macrophage infiltration, and fluorogenic caspase-3 activity.
At 5 hours after CPB, administration of inhaled carbon monoxide was associated with reduced pulmonary expression of the inflammatory cytokines tumor necrosis factor (CPB + CO 521 ± 77 vs CPB 821 ± 97 pg · mL(-1), P < 0.001) and interleukin-6 (304 ± 81 vs 860 ± 153 pg · mL(-1), P < 0.001), increased pulmonary expression of the cytoprotective heat shock protein 70 (CPB + CO 79 ± 14 vs CPB 36 ± 9 ng · mL(-1), P < 0.001) and the antiinflammatory cytokine interleukin-10 (CPB + CO 278 ± 40 vs CPB 63 ± 20 pg · mL(-1), P < 0.001), and with reduced pulmonary apoptotic protein caspase-3 activity (CPB + CO 0.73 ± 0.11 vs CPB 0.99 ± 0.1 RFU, P < 0.05). Carbon monoxide administration was associated with reduced histological evidence of lung injury and alveolar macrophage infiltration (78 ± 39 vs 145 ± 34 counts per field of vision, P < 0.001).
These results suggest that administration of low concentrations of carbon monoxide after CPB ("postconditioning") protects the lung from CPB-related lung injury.
在器官缺血损伤前给予吸入一氧化碳在动物模型中具有保护作用。由于没有数据表明这在缺血性损伤后也有效,我们的目的是在猪模型中研究吸入一氧化碳是否可以减轻体外循环(CPB)引起的肺损伤。
动物随机分为 SHAM 组(n = 5)、SHAM 组加吸入一氧化碳(n = 5)、标准 CPB 组(n = 10)和 CPB 加吸入一氧化碳组(n = 10)。CPB 结束后给予 250 ppm 的一氧化碳 1 小时。在 CPB 前、CPB 分离后即刻和 CPB 结束后 5 小时采集肺活检标本,以测定肺热休克蛋白 70 和 90 的表达、细胞因子、肺泡巨噬细胞浸润和荧光 caspase-3 活性。
CPB 后 5 小时,吸入一氧化碳的给药与炎症细胞因子肿瘤坏死因子(CPB + CO 521 ± 77 与 CPB 821 ± 97 pg·mL(-1),P < 0.001)和白细胞介素-6(CPB + CO 304 ± 81 与 CPB 860 ± 153 pg·mL(-1),P < 0.001)的肺表达减少、细胞保护热休克蛋白 70(CPB + CO 79 ± 14 与 CPB 36 ± 9 ng·mL(-1),P < 0.001)和抗炎细胞因子白细胞介素-10(CPB + CO 278 ± 40 与 CPB 63 ± 20 pg·mL(-1),P < 0.001)的肺表达增加以及肺凋亡蛋白 caspase-3 活性降低(CPB + CO 0.73 ± 0.11 与 CPB 0.99 ± 0.1 RFU,P < 0.05)有关。一氧化碳给药与肺损伤和肺泡巨噬细胞浸润的组织学证据减少有关(CPB + CO 78 ± 39 与 CPB 145 ± 34 个视野/计数,P < 0.001)。
这些结果表明,CPB 后给予低浓度一氧化碳(“后处理”)可保护肺免受 CPB 相关肺损伤。