Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
Biochemistry. 2011 Feb 1;50(4):491-501. doi: 10.1021/bi101883y. Epub 2010 Dec 31.
Quinones are naturally occurring isoprenoids that are widely exploited by photosynthetic reaction centers. Protein interactions modify the properties of quinones such that similar quinone species can perform diverse functions in reaction centers. Both type I and type II (oxygenic and nonoxygenic, respectively) reaction centers contain quinone cofactors that serve very different functions as the redox potential of similar quinones can operate at up to 800 mV lower reduction potential when present in type I reaction centers. However, the factors that determine quinone function in energy transduction remain unclear. It is thought that the location of the quinone cofactor, the geometry of its binding site, and the "smart" matrix effects from the surrounding protein environment greatly influence the functional properties of quinones. Photosystem II offers a unique system for the investigation of the factors that influence quinone function in energy transduction. It contains identical plastoquinones in the primary and secondary quinone acceptor sites, Q(A) and Q(B), which exhibit very different functional properties. This study is focused on elucidating the tuning and control of the primary semiquinone state, Q(A)(-), of photosystem II. We utilize high-resolution two-dimensional hyperfine sublevel correlation spectroscopy to directly probe the strength and orientation of the hydrogen bonds of the Q(A)(-) state with the surrounding protein environment of photosystem II. We observe two asymmetric hydrogen bonding interactions of reduced Q(A)(-) in which the strength of each hydrogen bond is affected by the relative nonplanarity of the bond. This study confirms the importance of hydrogen bonds in the redox tuning of the primary semiquinone state of photosystem II.
醌类是广泛存在于光合作用反应中心的天然异戊二烯。蛋白质相互作用修饰醌的性质,使得类似的醌类在反应中心中可以执行不同的功能。I 型和 II 型(分别为产氧和非产氧)反应中心都含有醌辅助因子,这些辅助因子的氧化还原电位差异很大,当存在于 I 型反应中心时,类似醌的还原电位可以低 800 mV。然而,决定醌在能量传递中功能的因素仍不清楚。人们认为,醌辅助因子的位置、其结合位点的几何形状以及周围蛋白质环境的“智能”基质效应极大地影响了醌的功能特性。光系统 II 为研究影响醌在能量传递中功能的因素提供了一个独特的系统。它在初级和次级醌受体位点 Q(A)和 Q(B)中都含有相同的质体醌,但其功能特性却非常不同。本研究集中于阐明光系统 II 中初级半醌态 Q(A)(-)的调谐和控制。我们利用高分辨率二维超精细亚能级相关光谱技术直接探测 Q(A)(-)与光系统 II 周围蛋白质环境之间氢键的强度和方向。我们观察到还原态 Q(A)(-)的两种不对称氢键相互作用,其中每个氢键的强度都受到键的相对非平面性的影响。这项研究证实了氢键在光系统 II 中初级半醌态的氧化还原调谐中的重要性。