Suppr超能文献

表观遗传调控基因表达作为抗癌药物靶点。

Epigenetic regulation of gene expression as an anticancer drug target.

机构信息

Auckland Cancer Society Research Centre, Faculty of Medical & Health Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand.

出版信息

Curr Cancer Drug Targets. 2011 Feb;11(2):199-212. doi: 10.2174/156800911794328510.

Abstract

Epigenetic processes play a key regulatory role in cancer. Hypermethylation in the CpG islands of the promoter regions of many tumour suppressor genes leads to the recruitment of co-repressors, altered chromatin structure, and ultimately transcriptional silencing. Key components in the regulation of DNA methylation are DNA methyltransferases (DNMT1, 2, 3A and 3B) and methyl CpG-binding proteins, which recognize methyl cytosine residues and recruit transcriptional repressor complexes, including histone deacetylases (HDAC). DNMT1 is responsible for the maintenance of DNA methylation patterns during replication. Inhibitors of this enzyme may potentially lead to DNA hypomethylation, and re-expression of tumour suppressor genes. Several DNMT inhibitors are currently being evaluated in preclinical and clinical studies, include various analogues of adenosine, cytidine or deoxycytidine. However, such drugs have had limited clinical success, perhaps because of cytotoxicity associated with their incorporation into DNA. Non-nucleoside small molecule inhibitors of DNMTs can directly block DNMT activity, and may be able to circumvent this cytotoxicity. Post-translational modifications of histones play a key role, not only in regulating chromatin structure and gene expression, but also in genomic stability. Histone acetylation (HAT) and histone deacetylation (HDAC) affect chromatin condensation, with concomitant effects on gene transcription. A further range of compounds is being evaluated for clinical use as HDAC inhibitors, including hydroxamic acids such as Trichostatin A (TSA) and Suberoyl anilide bishydroxamide (SAHA). MicroRNAs are also found to play a key role in cancer development, and novel approaches to their regulation may provide a susceptible anticancer drug target. Because of the interdependence of epigenetic processes, combinations of these approaches may have maximum clinical efficacy.

摘要

表观遗传过程在癌症中发挥着关键的调控作用。许多肿瘤抑制基因启动子区域的 CpG 岛上的过度甲基化导致共抑制因子的募集、染色质结构的改变,并最终导致转录沉默。DNA 甲基化调控的关键组成部分是 DNA 甲基转移酶(DNMT1、2、3A 和 3B)和甲基化 CpG 结合蛋白,它们可以识别甲基胞嘧啶残基,并募集转录抑制复合物,包括组蛋白去乙酰化酶(HDAC)。DNMT1 负责在复制过程中维持 DNA 甲基化模式。该酶的抑制剂可能潜在地导致 DNA 低甲基化,并重新表达肿瘤抑制基因。目前正在临床前和临床试验中评估几种 DNMT 抑制剂,包括腺嘌呤、胞嘧啶或脱氧胞嘧啶的各种类似物。然而,这些药物的临床疗效有限,可能是因为它们与 DNA 结合而产生细胞毒性。DNMT 的非核苷小分子抑制剂可以直接阻断 DNMT 的活性,并且可能能够避免这种细胞毒性。组蛋白的翻译后修饰在调节染色质结构和基因表达以及基因组稳定性方面发挥着关键作用。组蛋白乙酰化(HAT)和组蛋白去乙酰化(HDAC)影响染色质的凝聚,同时影响基因转录。还有一系列化合物正在被评估用于临床作为 HDAC 抑制剂,包括羟肟酸如 Trichostatin A(TSA)和 Suberoyl anilide bishydroxamide(SAHA)。microRNAs 也被发现在癌症的发展中发挥着关键作用,对它们的调节的新方法可能为敏感的抗癌药物靶点提供了新的方法。由于表观遗传过程的相互依存性,这些方法的组合可能具有最大的临床疗效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验