Joziasse D H, Shaper N L, Salyer L S, Van den Eijnden D H, van der Spoel A C, Shaper J H
Department of Medical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
Eur J Biochem. 1990 Jul 20;191(1):75-83. doi: 10.1111/j.1432-1033.1990.tb19095.x.
We have reported the isolation and characterization of a bovine cDNA clone containing the complete coding sequence for UDP-Gal:Gal beta 1----4GlcNAc alpha 1----3-galactosyltransferase [Joziasse, D. H., Shaper, J. H., Van den Eijnden, D. H., Van Tunen, A. J. & Shaper, N. L. (1989) J. Biol. Chem. 264, 14290-14297]. Insertion of this cDNA clone into the genome of Autographa californica nuclear polyhedrosis virus (AcNPV) and subsequent infection of Spodoptera frugiperda (Sf9) insect cells with recombinant virus, resulted in high-level expression of enzymatically active alpha 1----3-galactosyltransferase. The expressed enzyme accounted for about 2% of the cellular protein; the corresponding specific enzyme activity was 1000-fold higher than observed in calf thymus, the tissue with the highest specific enzyme activity reported to date. The recombinant alpha 1----3-galactosyltransferase could be readily detergent-solubilized and subsequently purified by affinity chromatography on UDP-hexanolamine-Sepharose. The recombinant alpha 1----3-galactosyltransferase showed the expected preference for the acceptor substrate N-acetyllactosamine (Gal beta 1----4GlcNAc), and demonstrated enzyme kinetics identical to those previously reported for affinity-purified calf thymus alpha 1----3-galactosyltransferase [Blanken, W. M. & Van den Eijnden, D. H. (1985) J. Biol. Chem. 260, 12927-12934]. In pilot studies, the recombinant enzyme was examined for the ability to synthesize alpha 1----3-galactosylated oligosaccharides, glycolipids and glycoproteins. By a combination of 1H-NMR, methylation analysis, HPLC, and exoglycosidase digestion it was established that, for each of the model compounds, the product of galactose transfer had the anticipated terminal structure, Gal alpha 1----3Gal beta 1----4-R. Our results demonstrate that catalysis by recombinant alpha 1----3-galactosyltransferase can be used to obtain preparative quantities of various alpha 1----3-galactosylated glycoconjugates. Therefore, enzymatic synthesis using the recombinant enzyme is an effective alternative to the chemical synthesis of these biologically relevant compounds.
我们已经报道了一个牛源cDNA克隆的分离与鉴定,该克隆包含UDP-半乳糖:β-1,4-半乳糖基-N-乙酰葡糖胺α-1,3-半乳糖基转移酶的完整编码序列[乔齐亚斯,D. H.,沙珀,J. H.,范登艾恩德,D. H.,范图嫩,A. J. & 沙珀,N. L.(1989年)《生物化学杂志》264卷,第14290 - 14297页]。将该cDNA克隆插入苜蓿银纹夜蛾核型多角体病毒(AcNPV)的基因组中,随后用重组病毒感染草地贪夜蛾(Sf9)昆虫细胞,导致具有酶活性的α-1,3-半乳糖基转移酶高水平表达。所表达的酶约占细胞蛋白的2%;相应的比酶活性比迄今为止报道的比酶活性最高的组织——小牛胸腺中观察到的高1000倍。重组α-1,3-半乳糖基转移酶很容易被去污剂溶解,随后通过UDP-己醇胺-琼脂糖亲和层析进行纯化。重组α-1,3-半乳糖基转移酶对受体底物N-乙酰乳糖胺(β-1,4-半乳糖基-N-乙酰葡糖胺)表现出预期的偏好,并表现出与先前报道的亲和纯化的小牛胸腺α-1,3-半乳糖基转移酶相同的酶动力学[布兰肯,W. M. & 范登艾恩德,D. H.(1985年)《生物化学杂志》260卷,第12927 - 12934页]。在初步研究中,检测了重组酶合成α-1,3-半乳糖基化寡糖、糖脂和糖蛋白的能力。通过1H-NMR、甲基化分析、HPLC和外切糖苷酶消化相结合的方法确定,对于每种模型化合物,半乳糖转移的产物具有预期的末端结构,即Galα-1,3Galβ-1,4-R。我们的结果表明,重组α-1,3-半乳糖基转移酶催化可用于获得各种α-1,3-半乳糖基化糖缀合物的制备量。因此,使用重组酶进行酶促合成是这些生物相关化合物化学合成的有效替代方法。