Department of Medicine, Rush Medical School, Chicago, IL, USA.
Vaccine. 2020 Sep 29;38(42):6487-6499. doi: 10.1016/j.vaccine.2020.08.032. Epub 2020 Aug 19.
The many carbohydrate chains on Covid-19 coronavirus SARS-CoV-2 and its S-protein form a glycan-shield that masks antigenic peptides and decreases uptake of inactivated virus or S-protein vaccines by APC. Studies on inactivated influenza virus and recombinant gp120 of HIV vaccines indicate that glycoengineering of glycan-shields to present α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) enables harnessing of the natural anti-Gal antibody for amplifying vaccine efficacy, as evaluated in mice producing anti-Gal. The α-gal epitope is the ligand for the natural anti-Gal antibody which constitutes ~1% of immunoglobulins in humans. Upon administration of vaccines presenting α-gal epitopes, anti-Gal binds to these epitopes at the vaccination site and forms immune complexes with the vaccines. These immune complexes are targeted for extensive uptake by APC as a result of binding of the Fc portion of immunocomplexed anti-Gal to Fc receptors on APC. This anti-Gal mediated effective uptake of vaccines by APC results in 10-200-fold higher anti-viral immune response and in 8-fold higher survival rate following challenge with a lethal dose of live influenza virus, than same vaccines lacking α-gal epitopes. It is suggested that glycoengineering of carbohydrate chains on the glycan-shield of inactivated SARS-CoV-2 or on S-protein vaccines, for presenting α-gal epitopes, will have similar amplifying effects on vaccine efficacy. α-Gal epitope synthesis on coronavirus vaccines can be achieved with recombinant α1,3galactosyltransferase, replication of the virus in cells with high α1,3galactosyltransferase activity as a result of stable transfection of cells with several copies of the α1,3galactosyltransferase gene (GGTA1), or by transduction of host cells with replication defective adenovirus containing this gene. In addition, recombinant S-protein presenting multiple α-gal epitopes on the glycan-shield may be produced in glycoengineered yeast or bacteria expression systems containing the corresponding glycosyltransferases. Prospective Covid-19 vaccines presenting α-gal epitopes may provide better protection than vaccines lacking this epitope because of increased uptake by APC.
新型冠状病毒 SARS-CoV-2 及其 S 蛋白上的许多碳水化合物链形成糖基护盾,掩盖抗原肽,并降低 APC 对失活病毒或 S 蛋白疫苗的摄取。对流感病毒和 HIV 疫苗重组 gp120 的研究表明,对糖基护盾进行糖基工程以呈现 α-半乳糖表位(Galα1-3Galβ1-4GlcNAc-R),可以利用天然抗半乳糖抗体来增强疫苗效力,这在产生抗半乳糖抗体的小鼠中得到了评估。α-半乳糖表位是天然抗半乳糖抗体的配体,占人类免疫球蛋白的~1%。在给予呈现 α-半乳糖表位的疫苗后,抗半乳糖与疫苗接种部位的这些表位结合,并与疫苗形成免疫复合物。由于免疫复合物中的抗半乳糖的 Fc 部分与 APC 上的 Fc 受体结合,这些免疫复合物被 APC 广泛摄取。这种抗半乳糖介导的 APC 对疫苗的有效摄取导致抗病毒免疫反应提高 10-200 倍,并且在用致死剂量的活流感病毒攻击后,存活率提高 8 倍,而缺乏 α-半乳糖表位的相同疫苗则没有这种效果。有人提出,对失活的 SARS-CoV-2 或 S 蛋白疫苗上的糖基护盾中的碳水化合物链进行糖基工程,以呈现 α-半乳糖表位,将对疫苗效力产生类似的增强作用。可以使用重组α1,3 半乳糖基转移酶在冠状病毒疫苗上合成α-半乳糖表位,由于用几个拷贝的α1,3 半乳糖基转移酶基因(GGTA1)稳定转染细胞,或者用含有该基因的复制缺陷型腺病毒转导宿主细胞,从而在细胞中复制病毒,导致细胞具有高α1,3 半乳糖基转移酶活性。此外,含有相应糖基转移酶的糖基工程酵母或细菌表达系统中可产生在糖基护盾上呈现多个 α-半乳糖表位的重组 S 蛋白。与缺乏这种表位的疫苗相比,呈现 α-半乳糖表位的新型前瞻性 Covid-19 疫苗可能提供更好的保护,因为 APC 的摄取增加了。