Suppr超能文献

具有SPECT成像验证的小鼠模型实验性切伦科夫发光断层扫描

Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation.

作者信息

Hu Zhenhua, Liang Jimin, Yang Weidong, Fan Weiwei, Li Congye, Ma Xiaowei, Chen Xueli, Ma Xiaopeng, Li Xiangsi, Qu Xiaochao, Wang Jing, Cao Feng, Tian Jie

机构信息

Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, 710071, China.

出版信息

Opt Express. 2010 Nov 22;18(24):24441-50. doi: 10.1364/OE.18.024441.

Abstract

Optical molecular imaging resulting from Cerenkov radiation has become a motivating topic recently and will potentially open new avenues for the study of small animal imaging. Cerenkov-based optical imaging taken from living animals in vivo has been studied with two-dimensional (2D) planar geometry and three-dimensional (3D) homogeneous mouse model. In this study, we performed 3D Cerenkov-based luminescence tomography (CLT) using a heterogeneous mouse model with an implanted Na(131)I radioactive source, which provided the accurate location for the reconstructed source. Furthermore, single photon emission computed tomography (SPECT) was utilized to verify the results of 3D CLT. We reconstructed the localization and intensity of an embedded radioactive source with various concentrations, and established a quantitative relationship between the radiotracer activity and the reconstructed intensity. The results showed the ability of in vivo CLT to recover the radioactive probe distribution in the heterogeneous mouse model and the potential of a SPECT imaging validation strategy to verify the results of optical molecular tomography.

摘要

由切伦科夫辐射产生的光学分子成像最近已成为一个备受关注的主题,并有望为小动物成像研究开辟新途径。基于切伦科夫的体内活体动物光学成像已采用二维(2D)平面几何结构和三维(3D)均匀小鼠模型进行了研究。在本研究中,我们使用植入了Na(131)I放射性源的非均匀小鼠模型进行了基于三维切伦科夫的发光断层扫描(CLT),这为重建源提供了准确位置。此外,利用单光子发射计算机断层扫描(SPECT)来验证三维CLT的结果。我们重建了不同浓度下嵌入放射性源的定位和强度,并建立了放射性示踪剂活性与重建强度之间的定量关系。结果表明,体内CLT能够在非均匀小鼠模型中恢复放射性探针分布,以及SPECT成像验证策略用于验证光学分子断层扫描结果的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验