Suppr超能文献

基于注意力机制的局部连接网络用于切伦科夫发光断层成像中的精确稳定重建。

Attention mechanism-based locally connected network for accurate and stable reconstruction in Cerenkov luminescence tomography.

作者信息

Zhang Xiaoning, Cai Meishan, Guo Lishuang, Zhang Zeyu, Shen Biluo, Zhang Xiaojun, Hu Zhenhua, Tian Jie

机构信息

Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China.

CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

Biomed Opt Express. 2021 Nov 18;12(12):7703-7716. doi: 10.1364/BOE.443517. eCollection 2021 Dec 1.

Abstract

Cerenkov luminescence tomography (CLT) is a novel and highly sensitive imaging technique, which could obtain the three-dimensional distribution of radioactive probes to achieve accurate tumor detection. However, the simplified radiative transfer equation and ill-conditioned inverse problem cause a reconstruction error. In this study, a novel attention mechanism based locally connected (AMLC) network was proposed to reduce barycenter error and improve morphological restorability. The proposed AMLC network consisted of two main parts: a fully connected sub-network for providing a coarse reconstruction result, and a locally connected sub-network based on an attention matrix for refinement. Both numerical simulations and experiments were conducted to show the superiority of the AMLC network in accuracy and stability over existing methods (MFCNN, KNN-LC network). This method improved CLT reconstruction performance and promoted the application of machine learning in optical imaging research.

摘要

切伦科夫发光断层扫描(CLT)是一种新型的高灵敏度成像技术,它可以获取放射性探针的三维分布以实现精确的肿瘤检测。然而,简化的辐射传输方程和病态反问题会导致重建误差。在本研究中,提出了一种基于注意力机制的局部连接(AMLC)网络,以减少重心误差并提高形态恢复能力。所提出的AMLC网络由两个主要部分组成:一个用于提供粗略重建结果的全连接子网,以及一个基于注意力矩阵的用于细化的局部连接子网。通过数值模拟和实验均表明,AMLC网络在准确性和稳定性方面优于现有方法(MFCNN、KNN-LC网络)。该方法提高了CLT重建性能,并推动了机器学习在光学成像研究中的应用。

相似文献

1
Attention mechanism-based locally connected network for accurate and stable reconstruction in Cerenkov luminescence tomography.
Biomed Opt Express. 2021 Nov 18;12(12):7703-7716. doi: 10.1364/BOE.443517. eCollection 2021 Dec 1.
2
A novel Cerenkov luminescence tomography approach using multilayer fully connected neural network.
Phys Med Biol. 2019 Dec 19;64(24):245010. doi: 10.1088/1361-6560/ab5bb4.
3
K-CapsNet: K-Nearest Neighbor Based Convolution Capsule Network for Cerenkov Luminescence Tomography Reconstruction.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10341089.
4
FISTA-NET: Deep Algorithm Unrolling for Cerenkov luminescence tomography.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340506.
5
K-Nearest Neighbor Based Locally Connected Network for Fast Morphological Reconstruction in Fluorescence Molecular Tomography.
IEEE Trans Med Imaging. 2020 Oct;39(10):3019-3028. doi: 10.1109/TMI.2020.2984557. Epub 2020 Apr 3.
6
Non-Negative Iterative Convex Refinement Approach for Accurate and Robust Reconstruction in Cerenkov Luminescence Tomography.
IEEE Trans Med Imaging. 2020 Oct;39(10):3207-3217. doi: 10.1109/TMI.2020.2987640. Epub 2020 Apr 21.
7
Weight Multispectral Reconstruction Strategy for Enhanced Reconstruction Accuracy and Stability With Cerenkov Luminescence Tomography.
IEEE Trans Med Imaging. 2017 Jun;36(6):1337-1346. doi: 10.1109/TMI.2017.2658661. Epub 2017 Feb 2.
8
A novel weighted auxiliary set matching pursuit method for glioma in Cerenkov luminescence tomography reconstruction.
J Biophotonics. 2022 Nov;15(11):e202200126. doi: 10.1002/jbio.202200126. Epub 2022 Aug 17.
10
Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography.
Biomed Opt Express. 2022 Nov 8;13(12):6284-6299. doi: 10.1364/BOE.474982. eCollection 2022 Dec 1.

本文引用的文献

1
2
Classification of Severe and Critical Covid-19 Using Deep Learning and Radiomics.
IEEE J Biomed Health Inform. 2020 Dec;24(12):3585-3594. doi: 10.1109/JBHI.2020.3036722. Epub 2020 Dec 4.
3
Non-Negative Iterative Convex Refinement Approach for Accurate and Robust Reconstruction in Cerenkov Luminescence Tomography.
IEEE Trans Med Imaging. 2020 Oct;39(10):3207-3217. doi: 10.1109/TMI.2020.2987640. Epub 2020 Apr 21.
4
K-Nearest Neighbor Based Locally Connected Network for Fast Morphological Reconstruction in Fluorescence Molecular Tomography.
IEEE Trans Med Imaging. 2020 Oct;39(10):3019-3028. doi: 10.1109/TMI.2020.2984557. Epub 2020 Apr 3.
5
Recent methodology advances in fluorescence molecular tomography.
Vis Comput Ind Biomed Art. 2018 Sep 5;1(1):1. doi: 10.1186/s42492-018-0001-6.
6
A novel Cerenkov luminescence tomography approach using multilayer fully connected neural network.
Phys Med Biol. 2019 Dec 19;64(24):245010. doi: 10.1088/1361-6560/ab5bb4.
7
Adaptive Gaussian Weighted Laplace Prior Regularization Enables Accurate Morphological Reconstruction in Fluorescence Molecular Tomography.
IEEE Trans Med Imaging. 2019 Dec;38(12):2726-2734. doi: 10.1109/TMI.2019.2912222. Epub 2019 Apr 22.
8
3D deep encoder-decoder network for fluorescence molecular tomography.
Opt Lett. 2019 Apr 15;44(8):1892-1895. doi: 10.1364/OL.44.001892.
9
Endoscopic Cerenkov luminescence imaging and image-guided tumor resection on hepatocellular carcinoma-bearing mouse models.
Nanomedicine. 2019 Apr;17:62-70. doi: 10.1016/j.nano.2018.12.017. Epub 2019 Jan 14.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验