Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avenida Reina Mercedes, 10, 41012 Sevilla, Spain.
Environ Sci Technol. 2011 Feb 1;45(3):1074-81. doi: 10.1021/es102418u. Epub 2010 Dec 17.
The main goal of this study was to use an oleophilic biostimulant (S-200) to target possible nutritional limitations for biodegradation of polycyclic aromatic hydrocarbons (PAHs) at the interface between nonaqueous-phase liquids (NAPLs) and the water phase. Biodegradation of PAHs present in fuel-containing NAPLs was slow and followed zero-order kinetics, indicating bioavailability restrictions. The biostimulant enhanced the biodegradation, producing logistic (S-shaped) kinetics and 10-fold increases in the rate of mineralization of phenanthrene, fluoranthene, and pyrene. Chemical analysis of residual fuel oil also evidenced an enhanced biodegradation of the alkyl-PAHs and n-alkanes. The enhancement was not the result of an increase in the rate of partitioning of PAHs into the aqueous phase, nor was it caused by the compensation of any nutritional deficiency in the medium. We suggest that biodegradation of PAH by bacteria attached to NAPLs can be limited by nutrient availability due to the simultaneous consumption of NAPL components, but this limitation can be overcome by interface fertilization.
本研究的主要目的是使用亲油性生物刺激剂(S-200)来针对非水相液体(NAPL)与水相之间多环芳烃(PAHs)生物降解过程中可能存在的营养限制。含燃料 NAPL 中的 PAHs 生物降解缓慢,遵循零级动力学,表明存在生物可利用性限制。生物刺激剂增强了生物降解,产生逻辑(S 形)动力学,并使菲、荧蒽和芘的矿化速率提高了 10 倍。对残余燃料油的化学分析也证明了烷基-PAH 和正构烷烃的生物降解增强。这种增强不是由于 PAHs 向水相分配速率的增加,也不是由于培养基中任何营养缺乏的补偿所致。我们认为,由于 NAPL 成分的同时消耗,附着在 NAPL 上的细菌对 PAH 的生物降解可能受到养分可用性的限制,但这种限制可以通过界面施肥来克服。