Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
J Proteome Res. 2011 Feb 4;10(2):800-11. doi: 10.1021/pr100951t. Epub 2010 Dec 20.
In the vast majority of bottom-up proteomics studies, protein digestion is performed using only mammalian trypsin. Although it is clearly the best enzyme available, the sole use of trypsin rarely leads to complete sequence coverage, even for abundant proteins. It is commonly assumed that this is because many tryptic peptides are either too short or too long to be identified by RPLC-MS/MS. We show through in silico analysis that 20-30% of the total sequence of three proteomes (Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Homo sapiens) is expected to be covered by Large post-Trypsin Peptides (LpTPs) with M(r) above 3000 Da. We then established size exclusion chromatography to fractionate complex yeast tryptic digests into pools of peptides based on size. We found that secondary digestion of LpTPs followed by LC-MS/MS analysis leads to a significant increase in identified proteins and a 32-50% relative increase in average sequence coverage compared to trypsin digestion alone. Application of the developed strategy to analyze the phosphoproteomes of S. pombe and of a human cell line identified a significant fraction of novel phosphosites. Overall our data indicate that specific targeting of LpTPs can complement standard bottom-up workflows to reveal a largely neglected portion of the proteome.
在绝大多数自下而上的蛋白质组学研究中,仅使用哺乳动物胰蛋白酶进行蛋白质消化。尽管它显然是最好的可用酶,但仅使用胰蛋白酶很少能导致完整的序列覆盖,即使对于丰富的蛋白质也是如此。人们普遍认为,这是因为许多胰蛋白酶肽要么太短,要么太长,无法通过 RPLC-MS/MS 识别。我们通过计算机分析表明,三个蛋白质组(酿酒酵母、酿酒酵母和人类)的总序列的 20-30%预计将被分子量大于 3000 Da 的大胰蛋白酶后肽 (LpTP) 覆盖。然后,我们建立了尺寸排阻色谱法,根据大小将复杂的酵母胰蛋白酶消化物分成肽池。我们发现,LpTP 的二次消化,然后进行 LC-MS/MS 分析,与单独使用胰蛋白酶消化相比,可显著增加鉴定的蛋白质数量,并使平均序列覆盖度相对增加 32-50%。该开发策略应用于分析酿酒酵母和人类细胞系的磷酸蛋白质组,鉴定出了大量新的磷酸化位点。总体而言,我们的数据表明,LpTP 的特异性靶向可以补充标准的自下而上的工作流程,以揭示蛋白质组中很大一部分被忽视的部分。