Kassal Ivan, Whitfield James D, Perdomo-Ortiz Alejandro, Yung Man-Hong, Aspuru-Guzik Alán
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Annu Rev Phys Chem. 2011;62:185-207. doi: 10.1146/annurev-physchem-032210-103512.
The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.
量子化学家熟知模拟量子系统存在困难,这催生了量子计算的想法。通过将量子系统映射到另一个更可控的系统,可以避免在传统计算机上对日益大型的量子系统进行精确模拟时所面临的急剧规模增长问题。在本征值问题。在本综述中,我们讨论了如今已成熟的量子计算领域中的思想在多大程度上已应用于化学问题。我们描述了在电子结构问题、化学动力学模拟、蛋白质折叠及其他任务方面具有显著优势的算法。尽管理论仍领先于实验,但我们概述了近期取得的进展,这些进展已促成了在小型量子信息处理器上进行的首次化学计算。