Suppr超能文献

γ-丁基甜菜碱羟化酶的结构与机制研究

Structural and mechanistic studies on γ-butyrobetaine hydroxylase.

作者信息

Leung Ivanhoe K H, Krojer Tobias J, Kochan Grazyna T, Henry Luc, von Delft Frank, Claridge Timothy D W, Oppermann Udo, McDonough Michael A, Schofield Christopher J

机构信息

The Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX13TA, UK.

出版信息

Chem Biol. 2010 Dec 22;17(12):1316-24. doi: 10.1016/j.chembiol.2010.09.016.

Abstract

The final step in carnitine biosynthesis is catalyzed by γ-butyrobetaine (γBB) hydroxylase (BBOX), an iron/2-oxoglutarate (2OG) dependent oxygenase. BBOX is inhibited by trimethylhydrazine-propionate (THP), a clinically used compound. We report structural and mechanistic studies on BBOX and its reaction with THP. Crystallographic and sequence analyses reveal that BBOX and trimethyllysine hydroxylase form a subfamily of 2OG oxygenases that dimerize using an N-terminal domain. The crystal structure reveals the active site is enclosed and how THP competes with γBB. THP is a substrate giving formaldehyde (supporting structural links with histone demethylases), dimethylamine, malonic acid semi-aldehyde, and an unexpected product with an additional carbon-carbon bond resulting from N-demethylation coupled to oxidative rearrangement, likely via an unusual radical mechanism. The results provide a basis for development of improved BBOX inhibitors and may inspire the discovery of additional rearrangement reactions.

摘要

肉碱生物合成的最后一步由γ-丁甜菜碱(γBB)羟化酶(BBOX)催化,它是一种依赖铁/2-氧代戊二酸(2OG)的加氧酶。BBOX受到临床上使用的化合物三甲基肼丙酸酯(THP)的抑制。我们报告了关于BBOX及其与THP反应的结构和机制研究。晶体学和序列分析表明,BBOX和三甲基赖氨酸羟化酶形成了一个2OG加氧酶亚家族,该亚家族利用N端结构域二聚化。晶体结构揭示了活性位点是封闭的,以及THP如何与γBB竞争。THP是一种底物,可生成甲醛(支持与组蛋白去甲基化酶的结构联系)、二甲胺、丙二酸半醛,以及一种意外产物,该产物通过N-去甲基化与氧化重排偶联产生了一个额外的碳-碳键,可能是通过一种不寻常的自由基机制。这些结果为开发改进的BBOX抑制剂提供了基础,并可能激发对其他重排反应的发现。

相似文献

1
Structural and mechanistic studies on γ-butyrobetaine hydroxylase.
Chem Biol. 2010 Dec 22;17(12):1316-24. doi: 10.1016/j.chembiol.2010.09.016.
2
Cation-π Interactions Contribute to Substrate Recognition in γ-Butyrobetaine Hydroxylase Catalysis.
Chemistry. 2016 Jan 22;22(4):1270-6. doi: 10.1002/chem.201503761. Epub 2015 Dec 14.
3
γ-Butyrobetaine hydroxylase catalyses a Stevens type rearrangement.
Bioorg Med Chem Lett. 2012 Aug 1;22(15):4975-8. doi: 10.1016/j.bmcl.2012.06.024. Epub 2012 Jun 16.
4
Oxygenase-catalyzed desymmetrization of N,N-dialkyl-piperidine-4-carboxylic acids.
Angew Chem Int Ed Engl. 2014 Oct 6;53(41):10925-7. doi: 10.1002/anie.201406125. Epub 2014 Aug 27.
5
Ejection of structural zinc leads to inhibition of γ-butyrobetaine hydroxylase.
Bioorg Med Chem Lett. 2014 Nov 1;24(21):4954-7. doi: 10.1016/j.bmcl.2014.09.035. Epub 2014 Sep 19.
6
F NMR studies on γ-butyrobetaine hydroxylase provide mechanistic insights and suggest a dual inhibition mode.
Chem Commun (Camb). 2019 Dec 5;55(98):14717-14720. doi: 10.1039/c9cc06466d.
7
Investigating the active site of human trimethyllysine hydroxylase.
Biochem J. 2019 Apr 10;476(7):1109-1119. doi: 10.1042/BCJ20180857.
8
Targeting carnitine biosynthesis: discovery of new inhibitors against γ-butyrobetaine hydroxylase.
J Med Chem. 2014 Mar 27;57(6):2213-36. doi: 10.1021/jm401603e. Epub 2014 Mar 14.

引用本文的文献

1
An integrated structural and biophysical approach to study carbon metabolism in .
QRB Discov. 2025 Mar 12;6:e15. doi: 10.1017/qrd.2025.6. eCollection 2025.
3
BBOX1 restrains TBK1-mTORC1 oncogenic signaling in clear cell renal cell carcinoma.
Nat Commun. 2025 Feb 11;16(1):1543. doi: 10.1038/s41467-025-56955-y.
4
Mammalian hydroxylation of microbiome-derived obesogen, delta-valerobetaine, to homocarnitine, a 5-carbon carnitine analog.
J Biol Chem. 2025 Jan;301(1):108074. doi: 10.1016/j.jbc.2024.108074. Epub 2024 Dec 13.
5
Regulation of mA (N-Methyladenosine) methylation modifiers in solid cancers.
Funct Integr Genomics. 2024 Oct 23;24(6):193. doi: 10.1007/s10142-024-01467-z.
7
Chemoautotrophic production of gaseous hydrocarbons, bioplastics and osmolytes by a novel Halomonas species.
Biotechnol Biofuels Bioprod. 2023 Oct 11;16(1):152. doi: 10.1186/s13068-023-02404-1.
8
Buffalo milk and rumen fluid metabolome are significantly affected by green feed.
Sci Rep. 2023 Jan 25;13(1):1381. doi: 10.1038/s41598-022-25491-w.
9
Binding versus Enzymatic Processing of ε-Trimethyllysine Dioxygenase Substrate Analogues.
ACS Med Chem Lett. 2022 Oct 21;13(11):1723-1729. doi: 10.1021/acsmedchemlett.2c00261. eCollection 2022 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验