Suppr超能文献

黑腹果蝇中转座元件的群体基因组学。

Population genomics of transposable elements in Drosophila melanogaster.

机构信息

Department of Biology, Stanford University.

出版信息

Mol Biol Evol. 2011 May;28(5):1633-44. doi: 10.1093/molbev/msq337. Epub 2010 Dec 16.

Abstract

Transposable elements (TEs) are the primary contributors to the genome bulk in many organisms and are major players in genome evolution. A clear and thorough understanding of the population dynamics of TEs is therefore essential for full comprehension of the eukaryotic genome evolution and function. Although TEs in Drosophila melanogaster have received much attention, population dynamics of most TE families in this species remains entirely unexplored. It is not clear whether the same population processes can account for the population behaviors of all TEs in Drosophila or whether, as has been suggested previously, different orders behave according to very different rules. In this work, we analyzed population frequencies for a large number of individual TEs (755 TEs) in five North American and one sub-Saharan African D. melanogaster populations (75 strains in total). These TEs have been annotated in the reference D. melanogaster euchromatic genome and have been sampled from all three major orders (non-LTR, LTR, and TIR) and from all families with more than 20 TE copies (55 families in total). We find strong evidence that TEs in Drosophila across all orders and families are subject to purifying selection at the level of ectopic recombination. We showed that strength of this selection varies predictably with recombination rate, length of individual TEs, and copy number and length of other TEs in the same family. Importantly, these rules do not appear to vary across orders. Finally, we built a statistical model that considered only individual TE-level (such as the TE length) and family-level properties (such as the copy number) and were able to explain more than 40% of the variation in TE frequencies in D. melanogaster.

摘要

转座元件 (TEs) 是许多生物体基因组的主要组成部分,也是基因组进化的主要参与者。因此,清晰透彻地了解 TEs 的群体动态对于全面理解真核生物基因组的进化和功能至关重要。尽管黑腹果蝇中的 TEs 已经受到了广泛关注,但该物种中大多数 TE 家族的群体动态仍完全未知。目前尚不清楚相同的群体过程是否可以解释果蝇中所有 TE 的群体行为,或者是否如先前所建议的那样,不同的顺序遵循非常不同的规则。在这项工作中,我们分析了来自五个北美和一个撒哈拉以南非洲的黑腹果蝇种群(总共 75 个品系)的大量个体 TE(755 个 TE)的群体频率。这些 TE 已在参考黑腹果蝇常染色质基因组中进行了注释,并且已经从三个主要顺序(非 LTR、LTR 和 TIR)和所有具有 20 个以上 TE 副本的家族中进行了采样(总共 55 个家族)。我们有强有力的证据表明,所有顺序和家族的果蝇 TE 都受到异位重组水平的纯化选择。我们表明,这种选择的强度可预测地随重组率、单个 TE 的长度以及同一家族中其他 TE 的拷贝数和长度而变化。重要的是,这些规则似乎不会随顺序而变化。最后,我们构建了一个统计模型,该模型仅考虑了个体 TE 级(例如 TE 长度)和家族级属性(例如拷贝数),并能够解释黑腹果蝇中 TE 频率变化的 40%以上。

相似文献

1
Population genomics of transposable elements in Drosophila melanogaster.
Mol Biol Evol. 2011 May;28(5):1633-44. doi: 10.1093/molbev/msq337. Epub 2010 Dec 16.
2
Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila.
Mol Biol Evol. 2003 Jun;20(6):880-92. doi: 10.1093/molbev/msg102. Epub 2003 Apr 25.
3
Sequencing of pooled DNA samples (Pool-Seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster.
PLoS Genet. 2012 Jan;8(1):e1002487. doi: 10.1371/journal.pgen.1002487. Epub 2012 Jan 26.
5
Abundance and distribution of transposable elements in two Drosophila QTL mapping resources.
Mol Biol Evol. 2013 Oct;30(10):2311-27. doi: 10.1093/molbev/mst129. Epub 2013 Jul 24.
7
Sequence divergence within transposable element families in the Drosophila melanogaster genome.
Genome Res. 2003 Aug;13(8):1889-96. doi: 10.1101/gr.827603. Epub 2003 Jul 17.
8
Patterns of transposable element variation and clinality in Drosophila.
Mol Ecol. 2019 Mar;28(6):1523-1536. doi: 10.1111/mec.14961. Epub 2019 Jan 11.

引用本文的文献

1
The impact of insertion bias into piRNA clusters on the invasion of transposable elements.
BMC Biol. 2025 Aug 15;23(1):258. doi: 10.1186/s12915-025-02370-0.
2
Purifying selection shapes the dynamics of P-element invasion in Drosophila simulans populations.
Genome Biol. 2025 Jul 24;26(1):221. doi: 10.1186/s13059-025-03688-2.
6
The impact of insertion bias into piRNA clusters on the invasion of transposable elements.
bioRxiv. 2024 Oct 18:2024.10.06.616898. doi: 10.1101/2024.10.06.616898.
9
The genomic distribution of transposable elements is driven by spatially variable purifying selection.
Nucleic Acids Res. 2023 Sep 22;51(17):9203-9213. doi: 10.1093/nar/gkad635.
10
The fine-scale recombination rate variation and associations with genomic features in a butterfly.
Genome Res. 2023 May;33(5):810-823. doi: 10.1101/gr.277414.122. Epub 2023 Jun 12.

本文引用的文献

1
T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data.
Nucleic Acids Res. 2011 Mar;39(6):e36. doi: 10.1093/nar/gkq1291. Epub 2010 Dec 21.
2
Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery.
Bioinformatics. 2010 Jun 15;26(12):i350-7. doi: 10.1093/bioinformatics/btq216.
3
Molecular evolution of piRNA and transposon control pathways in Drosophila.
Cold Spring Harb Symp Quant Biol. 2009;74:225-34. doi: 10.1101/sqb.2009.74.052. Epub 2010 May 7.
4
Drosophila melanogaster recombination rate calculator.
Gene. 2010 Sep 1;463(1-2):18-20. doi: 10.1016/j.gene.2010.04.015. Epub 2010 May 7.
7
Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila.
Genome Res. 2010 Feb;20(2):212-27. doi: 10.1101/gr.095406.109. Epub 2009 Nov 30.
8
Transposable elements in gene regulation and in the evolution of vertebrate genomes.
Curr Opin Genet Dev. 2009 Dec;19(6):607-12. doi: 10.1016/j.gde.2009.10.013. Epub 2009 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验