Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Denmark.
Nanoscale. 2011 Feb;3(2):706-17. doi: 10.1039/c0nr00442a. Epub 2010 Dec 20.
In this work, we present a computational methodology for predicting the change in signal (conductance sensitivity) of a nano-BioFET sensor (a sensor based on a biomolecule binding another biomolecule attached to a nano-wire field effect transistor) upon binding its target molecule. The methodology is a combination of the screening model of surface charge sensors in liquids developed by Brandbyge and co-workers [Sørensen et al., Appl. Phys. Lett., 2007, 91, 102105], with the PROPKA method for predicting the pH-dependent charge of proteins and protein-ligand complexes, developed by Jensen and co-workers [Li et al., Proteins: Struct., Funct., Bioinf., 2005, 61, 704-721, Bas et al., Proteins: Struct., Funct., Bioinf., 2008, 73, 765-783]. The predicted change in conductance sensitivity based on this methodology is compared to previously published data on nano-BioFET sensors obtained by other groups. In addition, the conductance sensitivity dependence from various parameters is explored for a standard wire, representative of a typical experimental setup. In general, the experimental data can be reproduced with sufficient accuracy to help interpret them. The method has the potential for even more quantitative predictions when key experimental parameters (such as the charge carrier density of the nano-wire or receptor density on the device surface) can be determined (and reported) more accurately.
在这项工作中,我们提出了一种计算方法,用于预测纳米生物 FET 传感器(基于与附着在纳米线场效应晶体管上的生物分子结合的生物分子的传感器)在与其靶分子结合时信号(电导率灵敏度)变化。该方法是由 Brandbyge 及其同事开发的液体表面电荷传感器筛选模型[ Sørensen 等人,应用物理快报,2007 年,91 期,102105]与 Jensen 及其同事开发的用于预测蛋白质和蛋白质-配体复合物 pH 依赖性电荷的 PROPKA 方法[Li 等人,蛋白质:结构,功能,生物信息学,2005 年,61 期,704-721 期,Bas 等人,蛋白质:结构,功能,生物信息学,2008 年,73 期,765-783]的组合。基于该方法预测的电导率灵敏度变化与其他小组先前发表的纳米生物 FET 传感器数据进行了比较。此外,还探索了各种参数对标准导线(代表典型实验设置)的电导率灵敏度的依赖性。一般来说,该方法具有更高的定量预测潜力,当可以更准确地确定(并报告)关键实验参数(例如纳米线的载流子密度或器件表面上的受体密度)时。