Suppr超能文献

计算生物体系中的局域水密度:分子动力学模拟与 3D-RISM-KH 溶剂化分子理论的比较。

Calculation of local water densities in biological systems: a comparison of molecular dynamics simulations and the 3D-RISM-KH molecular theory of solvation.

机构信息

Department of Bioengineering, Stanford University, 318 Campus Drive West, Stanford, California 94305, USA.

出版信息

J Phys Chem B. 2011 Jan 20;115(2):319-28. doi: 10.1021/jp102587q. Epub 2010 Dec 21.

Abstract

Water plays a unique role in all living organisms. Not only is it nature's ubiquitous solvent, but it also actively takes part in many cellular processes. In particular, the structure and properties of interfacial water near biomolecules such as proteins are often related to the function of the respective molecule. It can therefore be highly instructive to study the local water density around solutes in cellular systems, particularly when solvent-mediated forces such as the hydrophobic effect are relevant. Computational methods such as molecular dynamics (MD) simulations seem well suited to study these systems at the atomic level. However, due to sampling requirements, it is not clear that MD simulations are, indeed, the method of choice to obtain converged densities at a given level of precision. We here compare the calculation of local water densities with two different methods: MD simulations and the three-dimensional reference interaction site model with the Kovalenko-Hirata closure (3D-RISM-KH). In particular, we investigate the convergence of the local water density to assess the required simulation times for different levels of resolution. Moreover, we provide a quantitative comparison of the densities calculated with MD and with 3D-RISM-KH and investigate the effect of the choice of the water model for both methods. Our results show that 3D-RISM-KH yields density distributions that are very similar to those from MD up to a 0.5 Å resolution, but for significantly reduced computational cost. The combined use of MD and 3D-RISM-KH emerges as an auspicious perspective for efficient solvent sampling in dynamical systems.

摘要

水在所有生物中都起着独特的作用。它不仅是自然界无处不在的溶剂,而且还积极参与许多细胞过程。特别是,蛋白质等生物分子附近界面水的结构和性质通常与分子的功能有关。因此,研究细胞系统中溶质周围的局部水密度,特别是在涉及溶剂介导的力(如疏水效应)时,是非常有指导意义的。分子动力学(MD)模拟等计算方法似乎非常适合在原子水平上研究这些系统。然而,由于采样要求,尚不清楚 MD 模拟是否确实是在给定精度水平上获得收敛密度的首选方法。我们在这里比较了两种不同方法的局部水密度计算:分子动力学模拟和具有 Kovalenko-Hirata 封闭的三维参考相互作用位点模型(3D-RISM-KH)。特别是,我们研究了局部水密度的收敛性,以评估不同分辨率水平所需的模拟时间。此外,我们还对 MD 和 3D-RISM-KH 计算的密度进行了定量比较,并研究了两种方法中选择水分子模型的影响。我们的结果表明,3D-RISM-KH 可以生成与 MD 非常相似的密度分布,直到 0.5 Å 的分辨率,但计算成本显著降低。MD 和 3D-RISM-KH 的联合使用为动态系统中的有效溶剂采样提供了一个有希望的视角。

相似文献

5
Application of the 3D-RISM-KH molecular solvation theory for DMSO as solvent.
J Comput Aided Mol Des. 2019 Oct;33(10):905-912. doi: 10.1007/s10822-019-00238-4. Epub 2019 Oct 21.
7
Efficient treatment of solvation shells in 3D molecular theory of solvation.
J Comput Chem. 2012 Jun 30;33(17):1478-94. doi: 10.1002/jcc.22974. Epub 2012 Apr 20.
8
A molecular reconstruction approach to site-based 3D-RISM and comparison to GIST hydration thermodynamic maps in an enzyme active site.
PLoS One. 2019 Jul 10;14(7):e0219473. doi: 10.1371/journal.pone.0219473. eCollection 2019.
9
Solvent Composition Effects on the Structural Properties of the Aβ42 Monomer from the 3D-RISM-KH Molecular Theory of Solvation.
J Phys Chem B. 2019 Mar 21;123(11):2491-2506. doi: 10.1021/acs.jpcb.9b00480. Epub 2019 Mar 12.

引用本文的文献

1
Accommodating Statistical and Physics-Based Computational Protocols for Molecular Glue Model and Evaluation.
J Chem Inf Model. 2025 Jun 23;65(12):6166-6183. doi: 10.1021/acs.jcim.5c00387. Epub 2025 Jun 10.
2
Design, Synthesis, and Biological Evaluation of a Series of Spiro Analogues as Novel HPK1 Inhibitors.
ACS Med Chem Lett. 2024 Oct 30;15(11):2032-2041. doi: 10.1021/acsmedchemlett.4c00434. eCollection 2024 Nov 14.
4
Salt bridge dynamics in protein/DNA recognition: a comparative analysis of Elk1 and ETV6.
Phys Chem Chem Phys. 2021 Jun 23;23(24):13490-13502. doi: 10.1039/d1cp01568k.
5
Dissecting Dynamic and Hydration Contributions to Sequence-Dependent DNA Minor Groove Recognition.
Biophys J. 2020 Oct 6;119(7):1402-1415. doi: 10.1016/j.bpj.2020.08.013. Epub 2020 Aug 20.
6
Applications of water molecules for analysis of macromolecule properties.
Comput Struct Biotechnol J. 2020 Feb 12;18:355-365. doi: 10.1016/j.csbj.2020.02.001. eCollection 2020.
8
A molecular reconstruction approach to site-based 3D-RISM and comparison to GIST hydration thermodynamic maps in an enzyme active site.
PLoS One. 2019 Jul 10;14(7):e0219473. doi: 10.1371/journal.pone.0219473. eCollection 2019.
9
Architecture and hydration of the arginine-binding site of neuropilin-1.
FEBS J. 2018 Apr;285(7):1290-1304. doi: 10.1111/febs.14405. Epub 2018 Feb 25.
10
SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling.
J Comput Aided Mol Des. 2016 Nov;30(11):1115-1127. doi: 10.1007/s10822-016-9947-7. Epub 2016 Sep 1.

本文引用的文献

1
Non-bulk-like solvent behavior in the ribosome exit tunnel.
PLoS Comput Biol. 2010 Oct 21;6(10):e1000963. doi: 10.1371/journal.pcbi.1000963.
3
Three-dimensional molecular theory of solvation coupled with molecular dynamics in Amber.
J Chem Theory Comput. 2010 Mar 9;6(3):607-624. doi: 10.1021/ct900460m.
5
Fluctuations of water near extended hydrophobic and hydrophilic surfaces.
J Phys Chem B. 2010 Feb 4;114(4):1632-7. doi: 10.1021/jp909048f.
6
Ion solvation in a water-urea mixture.
J Phys Chem B. 2010 Jan 14;114(1):613-9. doi: 10.1021/jp908814t.
7
The liquid water polymorphism.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15097-8. doi: 10.1073/pnas.0908198106. Epub 2009 Sep 1.
8
Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15119-24. doi: 10.1073/pnas.0902778106. Epub 2009 Aug 25.
9
The inhomogeneous structure of water at ambient conditions.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15214-8. doi: 10.1073/pnas.0904743106. Epub 2009 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验