Xu Qixuan, Liu Wenlang, Liu Hao, Zheng Zheng
Divamics Inc., Suzhou Creative Industry Park Phase V Building 11-301, Suzhou 215000, China.
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China.
J Chem Inf Model. 2025 Jun 23;65(12):6166-6183. doi: 10.1021/acs.jcim.5c00387. Epub 2025 Jun 10.
Molecular glues (MGs) offer a promising strategy for modulating protein-protein interactions (PPIs) by inducing novel intermolecular contacts or stabilizing existing ones. However, despite cryo-electron microscopy and related techniques providing high-resolution structural models, their substantial resource requirements─including specialized equipment, expertise, and processing time─often restrict their application in the rational design of similar MGs. Recognizing the diverse mechanisms of MG action, we employ two distinct computational approaches: AlphaFold-Multimer and molecular docking, tailored to three specific MG systems. By validating these models against experimental crystal structures and elucidating the dynamic mechanisms underlying molecular glue formation, we establish a foundation for developing more effective compounds. Furthermore, molecular dynamics simulations provide atomic-resolution snapshots of the ternary complexes over time, including water-mediated interaction networks, revealing dynamic information that can guide the design of molecular glues with distinct kinetic profiles or specificity properties influenced by peripheral molecular events. Our findings suggest that structure-based computational approaches will be increasingly pivotal in rationalizing these therapeutically promising MGs.
分子胶(MGs)为通过诱导新的分子间接触或稳定现有接触来调节蛋白质-蛋白质相互作用(PPIs)提供了一种很有前景的策略。然而,尽管冷冻电子显微镜及相关技术能提供高分辨率的结构模型,但它们对资源的大量需求,包括专业设备、专业知识和处理时间,常常限制了它们在合理设计类似分子胶中的应用。认识到分子胶作用机制的多样性,我们采用了两种不同的计算方法:AlphaFold-Multimer和分子对接,并针对三个特定的分子胶系统进行了定制。通过根据实验晶体结构验证这些模型,并阐明分子胶形成背后的动态机制,我们为开发更有效的化合物奠定了基础。此外,分子动力学模拟提供了三元复合物随时间变化的原子分辨率快照,包括水介导的相互作用网络,揭示了动态信息,这些信息可指导设计具有不同动力学特征或受周边分子事件影响的特异性性质的分子胶。我们的研究结果表明,基于结构的计算方法在使这些具有治疗前景的分子胶合理化方面将变得越来越关键。