Suppr超能文献

神经和蝗虫股骨神经孤子理论中的周期解和不应期。

Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve.

机构信息

Membrane Biophysics Group, Niels Bohr Institute, Univ. Copenhagen, Denmark.

出版信息

Biophys Chem. 2011 Jan;153(2-3):159-67. doi: 10.1016/j.bpc.2010.11.001. Epub 2010 Nov 19.

Abstract

Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generation when the constraint for the nerve is the conservation of the overall length of the nerve. This condition generates an undershoot beneath the baseline ('hyperpolarization') and a 'refractory period', i.e., a minimum distance between pulses. In this paper, we outline the theory for periodic solutions to the wave equation and compare these results to action potentials from the femoral nerve of the locust (Locusta migratoria). In particular, we describe the frequently occurring minimum-distance doublet pulses seen in these neurons and compare them to the periodic pulse solutions.

摘要

在接近熔融转变的情况下,可以传播孤立的机电脉冲,这些脉冲反映了神经脉冲的许多实验特征,包括机械位错和可逆的热产生。在这里,我们表明,当神经的约束条件是神经总长度的守恒时,也有可能产生周期性脉冲的产生。这种情况会在基线以下产生一个下冲(“超极化”)和一个“不应期”,即脉冲之间的最小距离。在本文中,我们概述了波动方程的周期解理论,并将这些结果与蝗虫(Locusta migratoria)股神经的动作电位进行了比较。特别是,我们描述了这些神经元中经常出现的最小距离双脉冲,并将它们与周期性脉冲解进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验