Suppr超能文献

一种新型的模型,将浓度加和与独立作用相结合,用于预测多组分混合物的毒性。

A novel model integrated concentration addition with independent action for the prediction of toxicity of multi-component mixture.

机构信息

College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.

出版信息

Toxicology. 2011 Feb 27;280(3):164-72. doi: 10.1016/j.tox.2010.12.007. Epub 2010 Dec 21.

Abstract

Concentration addition (CA) and independent action (IA) have been used to describe the mixture of components having similar and dissimilar mode of action (MOA), respectively. Environmentally relevant mixture does, however, not follow the strictly similar or dissimilar MOA. A novel model, which integrated CA with IA based on the multiple linear regression (ICIM), was proposed for predicting the toxicity of noninteractive mixture. The predictive power of the ICIM model was validated by data set 1 including 13 mixtures of nine components and data set 2 including six mixtures of six components. For data set 1, ten uniform design with fixed concentration ratio ray (UDCR) mixtures was used as a training set to build an ICIM model, and the model was used to predict the toxicity of the test set consisting of three equivalent-effect concentration ratio (EECR) mixtures. For data set 2, the ICIM model based on four UDCR mixtures was used to predict the remaining two EECR mixtures. It is concluded that the ICIM model shows a strong predictive power for the mixture toxicities in the two data sets, and its prediction is better than CA and IA where the two models deviate from the concentration-response data of the mixtures. Thus, ICIM model is a powerful tool to evaluate and predict mixture toxicity, and maybe offer an important approach in risk assessment of mixture toxicity.

摘要

浓度加和(CA)和独立作用(IA)分别被用于描述具有相似和不同作用模式(MOA)的成分混合物。然而,具有环境相关性的混合物并不遵循严格的相似或不同的 MOA。本研究提出了一种新的模型,即基于多元线性回归(ICIM)将 CA 和 IA 进行整合,以预测非交互混合物的毒性。该模型通过包括 9 种成分的 13 种混合物和包括 6 种成分的 6 种混合物的两个数据集(数据集 1 和数据集 2)来验证其预测能力。对于数据集 1,使用十个具有固定浓度比射线(UDCR)的均匀设计混合物作为训练集来构建 ICIM 模型,并使用该模型预测由三个等效效应浓度比(EECR)混合物组成的测试集的毒性。对于数据集 2,使用基于四个 UDCR 混合物的 ICIM 模型来预测其余两个 EECR 混合物的毒性。结果表明,该 ICIM 模型对两个数据集中的混合物毒性具有很强的预测能力,并且其预测优于 CA 和 IA,因为这两个模型偏离了混合物的浓度-反应数据。因此,ICIM 模型是评估和预测混合物毒性的有力工具,并可能为混合物毒性的风险评估提供一种重要方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验