Suppr超能文献

实验设计方法和人工神经网络 (ANN) 在潜在胶束增强超滤过程中的应用。

Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process.

机构信息

Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, PO Box 91775-1111, Mashhad, Iran.

出版信息

J Hazard Mater. 2011 Mar 15;187(1-3):67-74. doi: 10.1016/j.jhazmat.2010.11.135. Epub 2010 Dec 8.

Abstract

In this study, micellar-enhanced ultrafiltration (MEUF) was applied to remove zinc ions from wastewater efficiently. Frequently, experimental design and artificial neural networks (ANNs) have been successfully used in membrane filtration process in recent years. In the present work, prediction of the permeate flux and rejection of metal ions by MEUF was tested, using design of experiment (DOE) and ANN models. In order to reach the goal of determining all the influential factors and their mutual effect on the overall performance the fractional factorial design has been used. The results show that due to the complexity in generalization of the MEUF process by any mathematical model, the neural network proves to be a very promising method in compared with fractional factorial design for the purpose of process simulation. These mathematical models are found to be reliable and predictive tools with an excellent accuracy, because their AARE was ±0.229%, ±0.017%, in comparison with experimental values for permeate flux and rejection, respectively.

摘要

在这项研究中,胶束强化超滤(MEUF)被应用于高效去除废水中的锌离子。近年来,实验设计和人工神经网络(ANNs)经常被成功地应用于膜过滤过程。在本工作中,使用设计实验(DOE)和 ANN 模型来测试 MEUF 对渗透通量和金属离子截留率的预测。为了确定所有影响因素及其对整体性能的相互影响,使用了部分因子设计。结果表明,由于 MEUF 过程的复杂性,任何数学模型都难以概括,因此神经网络被证明是一种非常有前途的方法,与部分因子设计相比,它更适合于过程模拟。这些数学模型被发现是可靠的和预测性的工具,具有极好的准确性,因为它们的 AARE 分别为±0.229%和±0.017%,与渗透通量和截留率的实验值相比。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验