Suppr超能文献

探索使用内部和外部对照来评估微阵列技术性能。

Exploring the use of internal and externalcontrols for assessing microarray technical performance.

作者信息

Lippa Katrice A, Duewer David L, Salit Marc L, Game Laurence, Causton Helen C

机构信息

Chemical Science and Technology Laboratory,National Institute of Standards and Technology (NIST) Gaithersburg, Maryland 20899 USA.

出版信息

BMC Res Notes. 2010 Dec 28;3:349. doi: 10.1186/1756-0500-3-349.

Abstract

BACKGROUND

The maturing of gene expression microarray technology and interest in the use of microarray-based applications for clinical and diagnostic applications calls for quantitative measures of quality. This manuscript presents a retrospective study characterizing several approaches to assess technical performance of microarray data measured on the Affymetrix GeneChip platform, including whole-array metrics and information from a standard mixture of external spike-in and endogenous internal controls. Spike-in controls were found to carry the same information about technical performance as whole-array metrics and endogenous "housekeeping" genes. These results support the use of spike-in controls as general tools for performance assessment across time, experimenters and array batches, suggesting that they have potential for comparison of microarray data generated across species using different technologies.

RESULTS

A layered PCA modeling methodology that uses data from a number of classes of controls (spike-in hybridization, spike-in polyA+, internal RNA degradation, endogenous or "housekeeping genes") was used for the assessment of microarray data quality. The controls provide information on multiple stages of the experimental protocol (e.g., hybridization, RNA amplification). External spike-in, hybridization and RNA labeling controls provide information related to both assay and hybridization performance whereas internal endogenous controls provide quality information on the biological sample. We find that the variance of the data generated from the external and internal controls carries critical information about technical performance; the PCA dissection of this variance is consistent with whole-array quality assessment based on a number of quality assurance/quality control (QA/QC) metrics.

CONCLUSIONS

These results provide support for the use of both external and internal RNA control data to assess the technical quality of microarray experiments. The observed consistency amongst the information carried by internal and external controls and whole-array quality measures offers promise for rationally-designed control standards for routine performance monitoring of multiplexed measurement platforms.

摘要

背景

基因表达微阵列技术的成熟以及对基于微阵列的临床和诊断应用的兴趣,使得需要对质量进行定量测量。本手稿展示了一项回顾性研究,该研究描述了几种评估在Affymetrix基因芯片平台上测量的微阵列数据技术性能的方法,包括全阵列指标以及来自外部掺入和内源性内部对照标准混合物的信息。发现掺入对照与全阵列指标和内源性“管家”基因携带相同的技术性能信息。这些结果支持将掺入对照用作跨时间、实验者和阵列批次进行性能评估的通用工具,表明它们具有比较使用不同技术在不同物种间生成的微阵列数据的潜力。

结果

一种分层主成分分析(PCA)建模方法被用于评估微阵列数据质量,该方法使用来自多种对照类别(掺入杂交、掺入polyA +、内部RNA降解、内源性或“管家”基因)的数据。这些对照提供了实验方案多个阶段的信息(例如,杂交、RNA扩增)。外部掺入、杂交和RNA标记对照提供了与检测和杂交性能相关的信息,而内部内源性对照提供了关于生物样品的质量信息。我们发现,来自外部和内部对照生成的数据方差携带了有关技术性能的关键信息;对该方差的PCA剖析与基于一些质量保证/质量控制(QA/QC)指标的全阵列质量评估一致。

结论

这些结果为使用外部和内部RNA对照数据评估微阵列实验的技术质量提供了支持。内部和外部对照以及全阵列质量测量所携带信息之间观察到的一致性,为合理设计用于多路复用测量平台常规性能监测的对照标准带来了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d150/3020182/1a40a7bd6df9/1756-0500-3-349-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验